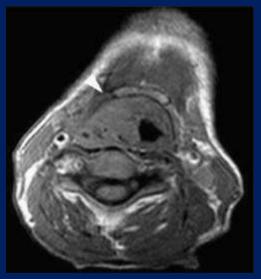


AROI ICRO Pre conference Workshop-AROICON 2022

Land mark Clinical Trials in Oncology - Past, Present and Future

Organ Preservation in Carcinoma Larynx and Hypopharynx

Sarbani Ghosh Laskar


Initial Staging work-up

- 1. Careful history with special attention to tobacco abuse
- 2. Not only DL scopy as well as FOL/ indirect laryngoscopy for cord status
- 3. Imaging: Locoregional and distant
- 4. Functional evaluation:
 - 1. FEES
 - 2. Barium Swallow
 - 3. Modified Water swallow test
 - 4. Video fluoroscopy
- Dental Evaluation if RT is being considered
- Nutritional assessment

Imaging

- Used to assess the extent of disease and nodal involvement.
- Multidetector CT is the first line imaging investigation for staging laryngeal carcinoma.
- Sensitivity, specificity and accuracy rates of 92%, 100%, and 93% respectively.#
- CT can upstage upto 21% of early Ca glottis.*

MRI has a sensitivity of 89-94%, a specificity of 74-88%, and negative predictive value of 94-96% for the detection of neoplastic cartilage invasion.#

Laryngopharyngeal Cancers

- Single modality treatment for stage I and Stage II disease (either surgery or RT) with focus on voice preservation and long term toxicity (Not being covered)
- Patients with T3 cancers: Organ preserving surgery vs Radical Surgery vs CTRT: ???? Equivalent locoregional control
- Patients with involvement of cartilaginous framework (T4 disease): Total Laryngectomy f/b PORT with voice rehabilitation for optimal disease control
- Organ preservation is not the same as Function preservation
- Long term toxicities of organ preservation need special attention

Endpoints of Interest

Local control

Ultimate Local control

Cause specific survival

Overall survival

Good disease control

Voice preservation
Preservation of swallowing
Respiration preservation
Reduce chances of
aspiration
Acceptable QOL

Preservation of organ and function

Head & Neck Cancers (Advanced) Organ Preservation Strategies

• Shift in focus from

survival

organ preservation

organ function conservation

- No compromise in the cure rates
- Surgery reserved for salvage

Basis of the Idea

- Favorable responses to NACT prior to surgery
- High rates of CR
- Uncompromised survival
- Favorable responses to NACT predict favorable responses to RT
- Pilot studies avoidance of surgery and prolonged survival with laryngeal preservation in Laryngo –hypopharyngeal tumors (Karp/Jacobs /Urba et al.)
- Patient preferences and Quality of Life (QoL)

Early attempts

- Harwood/ Croll- T3N0 Glottis, selected T4(without gross cartilage invasion or LN mets), T3/4N0M0 Supraglottis
 - ✓ 50% survival at 5 yrs
 - ✓ Larynx preserved in 2/3
 - ✓ In survivors upto ¾
 - ✓ How to select
 - √ NACT emerged as an effective method of triage

Two approaches were under discussion:

- (a) Induction PF followed by RT in good responders (tumor regression of at least 50%) or by surgery in other patients and
- (b) upfront surgery and postoperative RT.

Intact Laryngeal function: Non surgical Conservation

- Organ Conservation Protocols
- ✓ Induction chemotherapy
- ✓ Concurrent CTRT

Concurrent RT with Targeted therapy: Bonner Induction CT +/- Targeted therapy: TREMPLIN, DeLOS II

- ✓ NACT- CTRT
- ✓ Altered fractionation

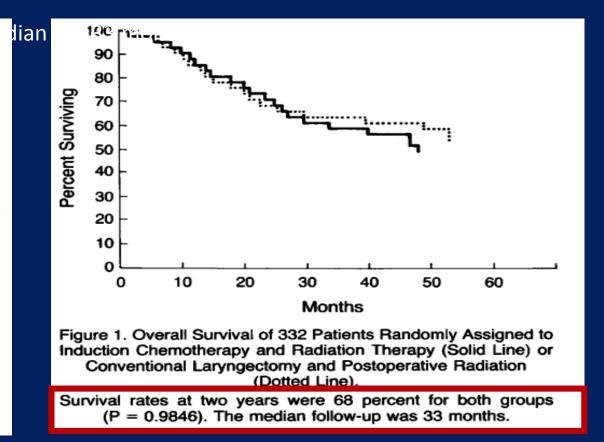
INDUCTION CHEMOTHERAPY PLUS RADIATION COMPARED WITH SURGERY PLUS RADIATION IN PATIENTS WITH ADVANCED LARYNGEAL CANCER

THE DEPARTMENT OF VETERANS AFFAIRS LARYNGEAL CANCER STUDY GROUP*

166 If PR/CR after 2 # **Upfront Surgery + PORT** 3rd cycle f/b RT 322 Patients (Stage III <u>R</u> and IV) 166 If no response Induction chemotherapy Surgery f/b PORT f/b Definitive RT on Day 1,22,43

	Trea	atment schedule	
Inj Cisplatinum	100 mg/m2	Rapid IV infusion	D1, D22, D43
lnj 5-FU	1000 mg/m2	Continuous 24-hour IV infusion	For 5 days (following above, D1, D22, D43)
Definitive RT	6600 to 7600 cGy to the primary tumor site	Doses to the nodes: N0: 5000 cGy cN< 2cm: 6600 cGy cN: 2 - 4cm: 7000 cGy cN: >4cm: 7500 cGy All areas presumed to be at risk for microscopic disease received at least 5000 to 5040 cGy.	 Dose to the spinal cord< 4500 cGy. Conventional
Adjuvant RT	At high risk for a local recurrence: 5000 to 5040 cGy + 1000 cGy. At normal risk: 5000 to 5040 cGy. Any residual disease: 5000 to 5040 cGy plus an additional 1500 to 2380 cGy.		fractionation @200cGy/# • 5#/ week
	All surgery was do	ependant on extent of disease	

All surgery was dependant on extent of disease


Response assessment: Physical examination, IDL (Days 18-21, after start of C2)

CR: complete disappearance of all clinically evident tumor

PR: 50 percent reduction in the sum of the product of the longest dimension and its perpendicular for each tumor, as compared with the initial tumor dimensions.

- Responses at Primary and Node were graded separately
- Response of the primary tumor determined the patient's eligibility to proceed with radiation.
- Patients with at least a partial response at the primary tumor site and no progression of any neck adenopathy received a third cycle of chemotherapy and definitive radiation.
- Patients without at least a partial response in the larynx and those with any evidence of disease progression (including neck disease) underwent immediate surgical resection and postoperative radiation therapy.
- After the induction chemotherapy was completed, a direct laryngoscopy, a tumor assessment, and a biopsy of the primary tumor were performed to obtain histologic confirmation of the response.

CHARACTERIST	IC	SURGERY	CHEMOTHERAPY	ALL
No. of patier	nts	166	166	332
Stage				
ш		95	93	188
IV		71	73	144
Tumor class				
T1,2		15	16	31
T3		109	107	216
T4		42	43	85
Node class				
N0		94	86	180
T1/T2	9%		34	60
11/12	9%		16	37
			30	55
T3	65%		25	
. •	00,0		61	124
			105	208
T4	26%		17	30
			90	188
Supra	alottic		63%	
Supra	giottia		03/0	

 In the induction chemotherapy plus RT group, at 2 years 64% of all patients retained their larynx, and 64% were free of disease.

Stage/T size	Rate of Salvage laryngectomy
III/IV	29%/44%
T3 or lesser/T4	29%/56%

Table 2. Causes of Death, According to Treatment Assignment.

Cause	Surgery $(N = 166)$	CHEMOTHERAP ($N = 166$)
	no. of	patients (%)
Cancer	38 (23)	42 (25)
Complication of therapy	4 (2)	4 (2)
Other	14 (8)	13 (8)
Unknown	2 (1)	6 (4)
All	58 (35)	65 (39)

Table 4. Prognostic Factors for Clinical Complete Tumor Regression
After Induction Chemotherapy in Advanced Laryngeal Carcinoma
(logistic regression)

Variable	Single	Multivariable	Stepwise			
T-class (T1-3 v T4)	.0191	.1880	25/125			
Karnofsky PS ($< 80 \ v > 80$)	.0967	.0929				
WBC count (< 5,000, 5,000-						
$10,000 > 10,000/\mu$ L)	.0741	.1175				
$Hgb (< mean \ v > mean)$.0741	.6342				
T size (> 4, 4-9, 10-14, > 15 cm)	.0103	.0421	.0075			
Growth pattern (1, 2 v 3, 4)*	.0205	.0115	.0093			

NOTE. Not significant variables were as follows: nodes, age, site, other histology, tumor grade.

Abbreviations: T, tumor; PS, performance status; Hgb, hemoglobin.

*1, 2 = pushing borders or well-formed infiltrating cords; 3, 4 = thin, irregular infiltrating cords or groups of cells or dissociated cells.

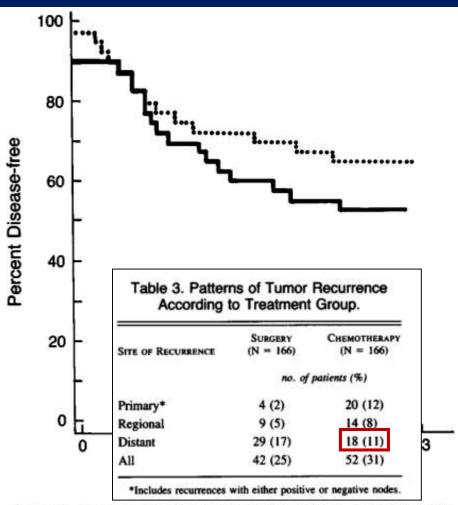


Figure 2. Disease-free Interval for 332 Patients Randomly Assigned to Induction Chemotherapy and Radiation Therapy (Solid Line) or Conventional Laryngectomy and Postoperative Radiation (Dotted Line).

The disease-free interval survival was shorter in the chemotherapy group, but the difference was not statistically significant (P = 0.1195).

Complete responders had better outcomes

This study set the stage for further larynx preservation studies and established induction chemotherapy as standard of care.

Critique

- The control rates for T3 cancers (65% of enrolled patients) were similar to historic published results with radiation alone and were a basis for criticism by radiation oncologists who argued that a comparator radiation-alone arm was needed.
- Anatomical rather than functional larynx preservation
- Non responders
 All total laryngectomy??

When did it not work?

- Fixed cord
- Cartilage invasion
- T4 vs T3 (attained statistical significance)
- Stage IV tumors (attained statistical significance)

Additionally

Local recurrences – 30 to 70 %, 70% within 1 yr

Long-term Quality of Life After Treatment of Laryngeal Cancer

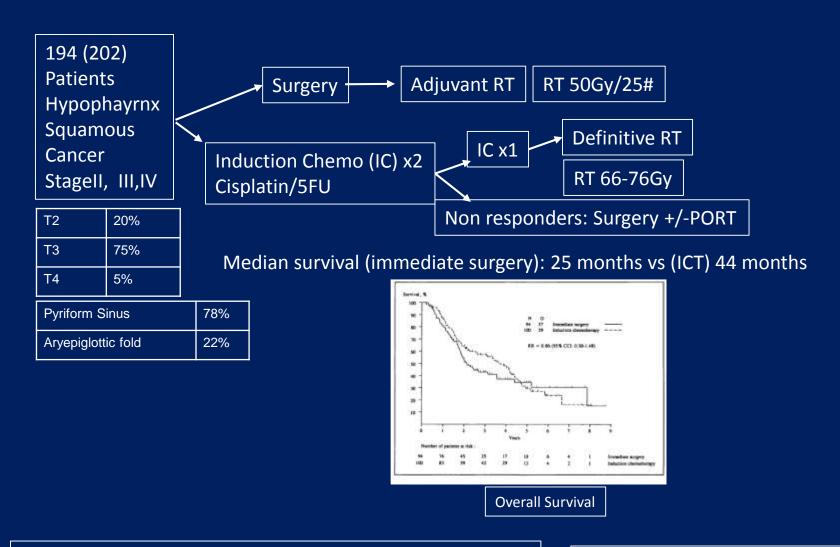
Jeffrey E. Terrell, MD; Susan G. Fisher, PhD; Gregory T. Wolf, MD; for The Veterans Affairs Laryngeal Cancer Study Group

Results: Patients randomized to the CT + RT group had significantly better (P<.05) quality-of-life scores on the SF-36 mental health domain (76.0) than the surgery and RT group (63.0), and also had better HNQOL pain scores (81.3 vs 64.3). Compared with patients who underwent laryngectomy, patients with intact larynges (CT + RT with larynx) had significantly less bodily pain (88.5 vs 56.5), better scores on the SF-36 mental health (79.8 vs 64.7), and better HNQOL emotion (89.7 vs 79.4) scores. More patients in the surgery and RT group (28%) were depressed than in the CT + RT group (15%).

- Pts who had successful organ preservation tended to have better scores on all domains of SF-36 compared to laryngectomy
- Pts who had successful organ preservation are associated with better quality of life related to freedom from pain, better emotional well-being and lower levels of depression.

1996: EORTC 24891 trial:

First randomized trial of Organ Preservation in Hypopharyngeal Cancers

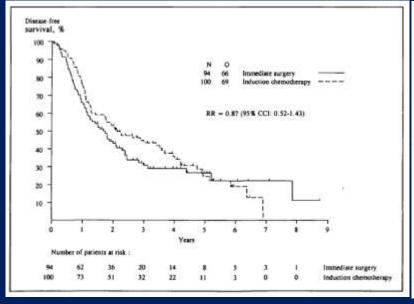

Larynx Preservation in Pyriform Sinus Cancer: Preliminary Results of a European Organization for Research and Treatment of Cancer Phase III Trial

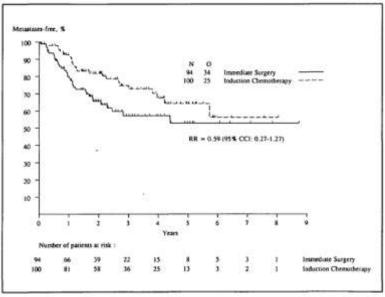
Jean-Louis Lefebvre, Dominique Chevalier, Bernard Luboinski, Anne Kirkpatrick, Laurence Collette, Tarek Sahmoud*

For the EORTC Head and Neck Cancer Cooperative Group

Journal of the National Cancer Institute, Vol. 88, No. 13, July 3, 1996

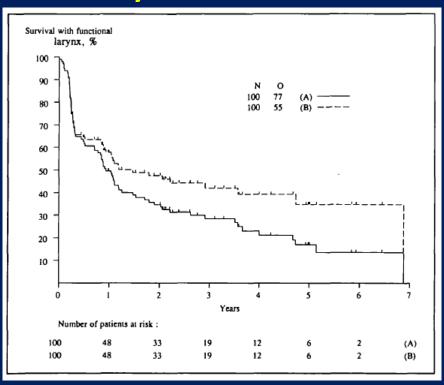
Hypopharyngeal Cancers: EORTC:24891




3 year Functional Larynx Preservation Rate: 42%

Lefebvre JL et al. JNCI 1996

Disease free survival


Metastasis Free Survival

- Treatment failures at local, regional and second primary sites occurred at approximately the same frequencies in both arms
- Fewer failures at distant sites in the induction-chemotherapy arm

Larynx Preservation

3- and 5-year estimates of retaining a functional larynx in patients in the ICT arm 42% and 35%, respectively

Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891

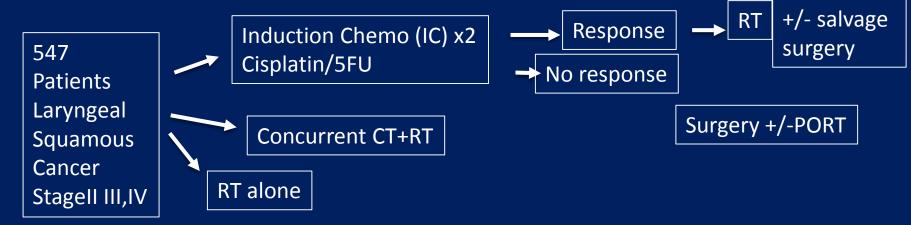
	Table 2. Pattern of f		O til	ai 27	1091						
Backgro	ound: V Sites of failure last	Surgery arm (n = 9	94)	-		Chemotherapy	arm (n = 100)	-	-	rvation	approach to
immediat	e surger ^{failure (%)}	Initial number of failures (n)	Number salvaged	Ultimate ^b failures, n	number of	Initial number failures (n)	of Number salvaged	Ultimate ^b nu failures, n (%			
Materia	l and m Local	13	2	11 (11.7)	Accepto.	20	6	14 (14.0)	11.40	approa	ach (total
laryngect	omy wit Distant	34	0	34 (36.2)		28	0	28 (28.0)		nemoth	erapy arm up
to three				3 yea	rs (%)		10	years	(%)		wed for
noninfe survival			Surge	ry	ICT		Surgery	· I	СТ		I survival [OS, PFS) and
Result	OS		43		57		13.8	-	13.1		and 49
patients 13.8%	OFS		31		43		-	-			ar OS rate was 0.8%,
respect Concli	PFS		-		-		8.5	-	10.8		wed more than
half of t	arynx preserv	ation	-		42		-	8	3.7		

Annals of Oncology 23: 2708–2714, 2012, doi:10.1093/annonc/mds065

EORTC 24891 vs VA trial

	VA trial (n=332)	EORTC 24891 (n=194)
Inclusion	Glottic, Supraglottic or Subglottic	PFS or AE fold
Exclusion	T1N1	N2c tumors excluded after amendment
Treatment Arms	Neck dissection not done in T3N0 and midline T4N0	All patients underwent neck dissection
Survival Endpoints Chemo response	2 year OS 68% in both arm 31% had complete response to 2 cycle of Chemo	3 year OS 43% Sx arm, 57% IC arm 54% had CR to 2-3 cycles of chemo
Larynx Preservation	2 year Larynx Preservation 66% in IC arm	3 and 5 year functional Larynx survival 42% and 35% in IC arm
Pattern of failure	Local and Regional Failure higher in IC arm, Distant metastasis higher in Sx arm	No difference in local or locoregional failure in 2 arms, Higher number of distant metastasis in Surgery arm
Other Prognostic Factors	Volume of disease, T4 stage	T4 stage, Nodal status, ECOG PS

- Induction chemotherapy was validated both for laryngeal and hypopharyngeal cancers
- Larynx could be preserved in about two-thirds of the patients without compromising survival or disease control.


BUT the definition of "laryngeal preservation" had to be clearly defined.

- ✓ Consider both the organ and its function
- ✓ No laryngectomy
- ✓ No long-term tracheotomy and
- ✓ No long-term feeding tube

NACT had minimal impact on overall survival.....

There was need for more intensive local therapy.

RTOG 91-11

T2	12%
T3	78%
T4	10%

Supraglottis	69%		
Glottis	31%		

The primary end point used for sample size calculation was the composite end point, laryngectomy-free survival

2 yr (Median FU: 3.8 years)	Local Control	DFS	OAS	Intact Larynx	Laryngectomy free survival	Distant Mets
Induction Chemo	61%	38%	55%	75%	59%, 43% (5yr)	15%
CT+RT	78%	36%	54%	88%	66% 45% (5yr)	12%
RT alone	56%	27%	56%	70%	53% 38% (5yr)	22%

- Higher Larynx preservation in CTRT arm
- Locoregional control was also significantly better with CTRT
- Both of the chemotherapy-based regimens suppressed distant metastases and resulted in better disease-free survival than radiotherapy alone
- Overall survival rates were similar in all three groups
- High-grade toxic effects was greater with the chemotherapy-based regimens
- The mucosal toxicity of concurrent radiotherapy and cisplatin was nearly twice as frequent as the mucosal toxicity of the other two treatments during radiotherapy

Long-Term Results of RTOG 91-11: A Comparison of Three Nonsurgical Treatment Strategies to Preserve the Larynx in Patients With Locally Advanced Larynx Cancer

Arlene A. Forastiere, Qiang Zhang, Randal S. Weber, Moshe H. Maor, Helmuth Goepfert, Thomas F. Pajak, William Morrison, Bonnie Glisson, Andy Trotti, John A. Ridge, Wade Thorstad, Henry Wagner, John F. Ensley,

	RT + Induction Chemotherapy		RT + Concomitant Chemotherapy		RT Alone		_ le	
Cause of Death	No. of Patients	%	No. of Patients	%	No. of Patients	%	ant	
Cancer under study	45	37.5	38	29.2	60	48.4		
Second malignancy	15	12.5	18	13.8	15	12.1		
Complications of protocol treatment	9	7.5	9	6.9	5	4.0	nita	
Complications of other treatment	3	2.5	2	1.5	3	2.4	ıt aı	
Unrelated to cancer or treatment	25	20.8	40	30.8	21	16.9	pup	
Unknown/not reported	23	19.2	23	17.7	20	16.1		
Total deaths	120		130		124			

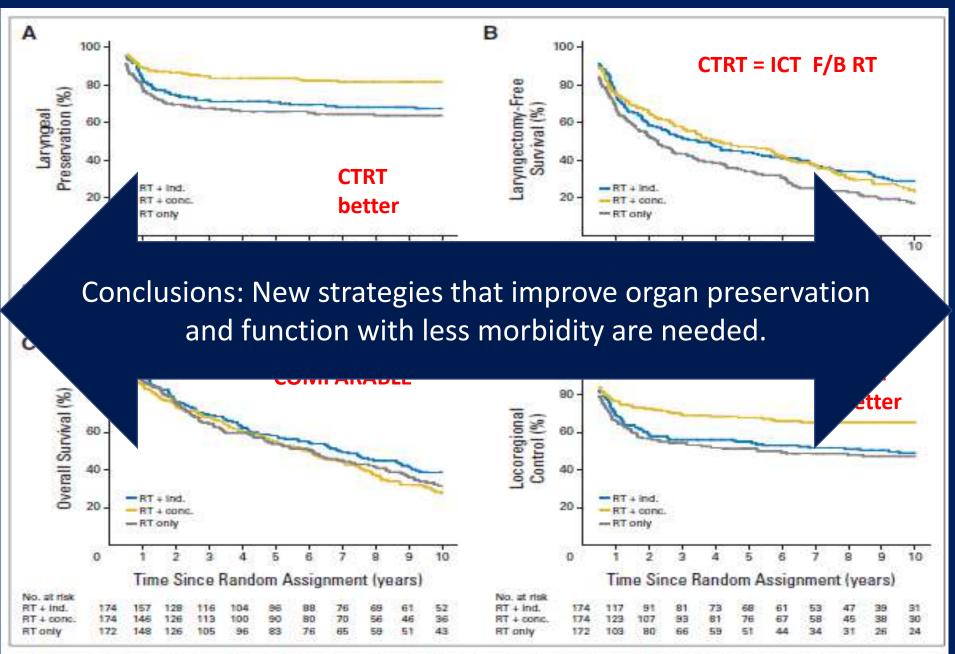


Fig 2. (A) Laryngeal preservation, (B) laryngectomy-free survival, (C) overall survival, and (D) locoregional control according to treatment group, conc., concomitant, ind., induction; RT, radiation therapy.

The Laryngoscope
Lippincott Williams & Wilkins, Inc.
© 2006 The American Laryngological,
Rhinological and Otological Society, Inc.

Laryngeal Cancer in the United States: Changes in Demographics, Patterns of Care, and Survival

Henry T. Hoffman, MD, MS, FACS; Kimberly Porter, MPH; Lucy H. Karnell, PhD; Jay S. Cooper, MD; Randall S. Weber, MD; Corey J. Langer, MD; Kie-Kian Ang, MD, PhD; Greer Gay, PhD; Andrew Stewart, MA; Robert A. Robinson, MD, PhD

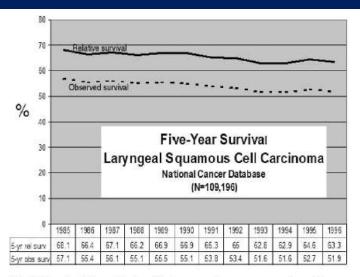
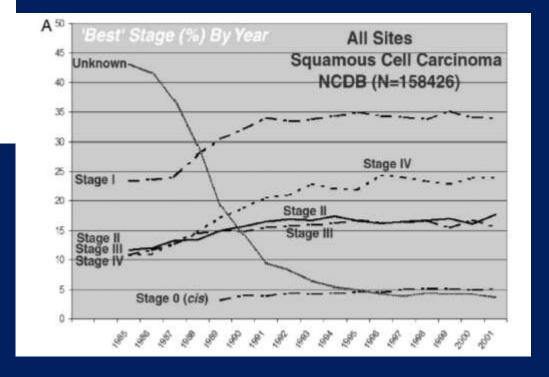



Fig. 2. Survival for patients with laryngeal squamous cell carcinoma within the NCDB decreased progressively from the mid-1980s to the mid-1990s.

LARYNX PRESERVATION CLINICAL TRIAL DESIGN: KEY ISSUES AND RECOMMENDATIONS—A CONSENSUS PANEL SUMMARY

Jean-Louis Lefebvre, M.D.,* and K. Kian Ang, M.D.,† on behalf of the Larynx Preservation Consensus Panel

I. J. Radiation Oncology ● Biology ● Physics Volume 73, Number 5, 2009

Purpose: To develop guidelines for the conduct of Phase III clinical trials of larynx preservation in patients with locally advanced laryngeal and hypopharyngeal cancer.

Methods and Materials: A multidisciplinary international consensus panel developed recommendations after reviewing results from completed Phase III randomized trials, meta-analyses, and published clinical reports with updates available through November, 2007. The guidelines were reviewed and approved by the panel.

Results: According to the recommendations, the trial population should include patients with T2 or T3 laryngeal or hypopharyngeal squamous cell carcinoma not considered for partial laryngectomy and exclude those with laryngeal dysfunction or age greater than 70 years. Functional assessments should include speech and swallowing. Voice should be routinely assessed with a simple, validated instrument. The primary endpoint should capture survival and function. The panel created a new endpoint: laryngo-esophageal dysfunction–free survival. Events are death, local relapse, total or partial laryngectomy, tracheotomy at 2 years or later, or feeding tube at 2 years or later. Recommended secondary endpoints are overall survival, progression-free survival, locoregional control, time to tracheotomy, time to laryngectomy, time to discontinuation of feeding tube, and quality of life/patient-reported outcomes. Correlative biomarker studies for near-term trials should include estimated glomerular filtration rate, excision repair cross-complementary-1 gene, E-cadherin and β -catenin, epiregulin and amphiregulin, and TP53 mutation.

Conclusions: Revised trial designs in several key areas are needed to advance the study of larynx preservation. With consistent methodologies, clinical trials can more effectively evaluate and quantify the therapeutic benefit of novel treatment options for patients with locally advanced laryngeal and hypopharyngeal cancer. © 2009

What do the Meta-Analyses suggest? (Pre-taxanes)

Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data

- 3 Trials, N-602, Median follow-up of 5.7 years
- Larynx Preserved in 23% of pts alive at 5 yrs
- There was significant heterogeneity between the three trials (p=0.05).

@ 5yrs	ICT f/b RT	Sx	P value
OS	39%	45%	0.1
DFS	34%	40%	0.05

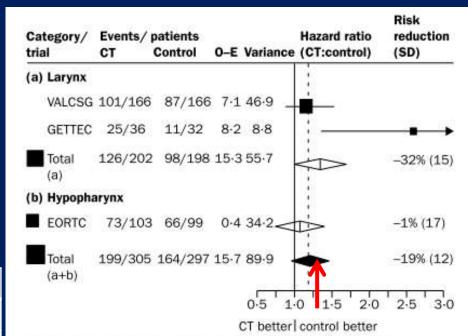
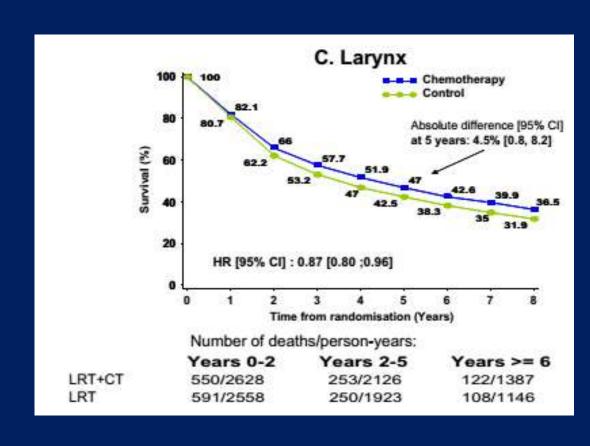


Figure 6: Hazard ratio of death of neoadjuvant cisplatinfluorouracil followed by radiotherapy in responders or by radical surgery plus radiotherapy in non-responders compared with radical surgery plus radiotherapy

Overall hazard ratio 1·19 (95% Cl 0·97–1·46), p=0·10. Test for heterogeneity, p=0·05.

MACH NC 2000

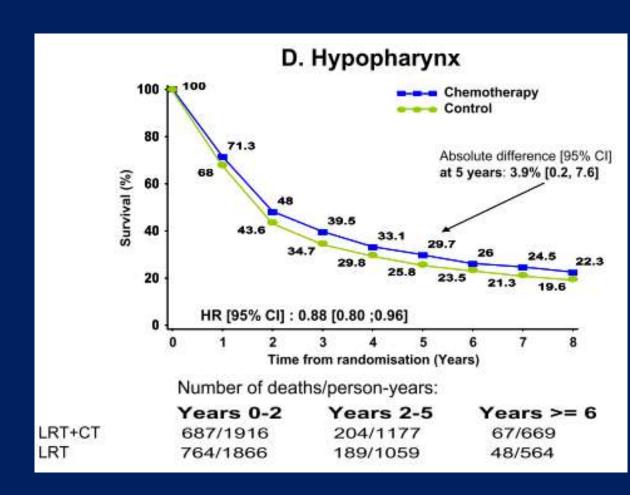
Meta-analysis of locoregional treatment with and without chemotherapy: effect on survival


Trial category	Hazard ratio (95% CI)	Chemo- therapy effect (p)	Heterogeneity (p)	Absolute benefit	
				At 2 years*	At 5 years*
Adjuvant	0.98 (0.85–1.19)	0.74	0.35	1%	1%
Neoadjuvant	0.95 (0.88-1.01)	0.10	0.38	2%	2%
Concomitant	0.81 (0.76-0.88)	<0.0001	<0.0001	7%	8%
Total	0.90 (0.85-0.94)	<0.0001	<0.0001	4%	4%

^{*}Assuming survival rates of 50% at 2 years and 32% at 5 years in control groups.

Level one evidence of significant benefit of addition of CT in terms of OS

MACH-NC - Laryngeal cancer


- 3216 patients with laryngeal cancer and 61 comparisons are included.
- The HR of death associated with chemotherapy is 0.87
- Absolute 5-year overall survival benefit of 4.5% increasing from 42.5% to 47.0%.

Blanchard et.al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): A comprehensive analysis by tumour site; Radiotherapy and Oncology 100 (2011) 33–40

MACH-NC - Hypopharyngeal cancer

- The HR of death associated with chemotherapy is 0.88
- Absolute 5-year overall survival benefit of 3.9%

Blanchard et.al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): A comprehensive analysis by tumour site; Radiotherapy and Oncology 100 (2011) 33–40

MACH NC 2011-Site wise anlaysis

Hazard ratios of death and 5-year absolute benefit (overall survival) associated with the use of chemotherapy according to tumour site and chemotherapy timing.

		Timing of chemotherapy			Test of interaction
		Adjuvant	Neoadjuvant	Concomitant	
Oral cavity	HR [95% CI]	0.94 [0.76; 1.17]	0.93 [0.82; 1.05]	0.80 [0.72; 0.89]	p = 0.15
	5-year abs benefit [CI]	+0.4% [-7.6; 8.4]	+2.2% [-2.9; 7.3]	+8.9% [4.4; 13.4]	•
Oropharynx	HR [95% CI]	1.15 [0.92; 1.44]	1.00 [0.90; 1.11]	0.78 [0.72; 0.85]	p < 0.0001
	5-year abs benefit [CI]	-0.4% [-9.6; 8.8]	+1.4% [-2.9; 5.7]	+8.1% [4.8; 11.4]	
Larynx	HR [95% CI]	1.05 [0.83; 1.33]	1.00 [0.81; 1.23]	0.80 [0.71; 0.90]	p = 0.05
	5-year abs benefit [CI]	+0.1 [-8.5; 8.7]	+3.8% [-4.6; 12.2]	+5.4% [0.5; 10.3]	*
Hypopharynx	HR [95% CI]	1.06 [0.82; 1.38]	0.88 [0.75; 1.02]	0.85 [0.75; 0.96]	p = 0.31
	5-year abs benefit [CI]	-2.3% [-13.7; ; 9.1]	+5.3% [-0.8; 11.4]	+4% [-1.1; 9.1]	74

OS is better in all sites with CCRT only

Organ Preservation for Advanced Larynx Cancer

Se.	Table 2. Late Effects and Function Assessments							
Study	Site	Treatment Groups	Toxicity Scale	Late Effects	Function Assessment			
VALCSG12.16,17	Larynx	a) TL → RT b) PF → RT	Not specified in report	Not reported	Voice quality and communication* Swallowing and eating related†			
RTOG 91-11 ^{13,14}	Larynx	a) PF → RT b) RT + P c) RT	NCI-CTC and RTOG late toxicity scoring system	NSD in 10-year cumulative grade 3-5 late toxicity; 30.6% v 33.3% v 38%	Voice quality,† swallowing,† and QOL			
24954- 22950 ¹⁰	Larynx Hypopharynx	a) PF → RT (70 Gy) b) PF alternating/RT (60 Gy)	Not specified in report	NSD in grade 3-4 mucosal: 35% v 34%; connective tissue: 41% v 35%	Measures not specified; % of patients with intelligible voice and normal intake reported			
GORTEC 2000-01 ¹¹	Larynx Hypopharynx	a) PF \rightarrow RT b) TPF \rightarrow RT	NCI-CTC and RTOG late toxicity scoring system	Grade 3 to 4 subcutaneous tissue: 7% v 4%	Not reported			
EORTC 24891 ^{8,9}	Hypopharynx	a) TLP \rightarrow RT b) PF \rightarrow RT	Not specified in report	Not reported	Not reported			

- 1. Although CRT improves LRC and OS, and allows for organ preservation, toxicities are increased compared with RT alone. The most common acute grade 3 to 4 complications (leukopenia, anemia, mucositis, and dysphagia) are increased from 14% to 43% over RT.
- 2. CRT patients were more likely to have a diet limited to soft foods or liquids,or require gastrostomy tube use at 1 year (26% compared with 18%with RT), but at 2 years there were no differences between the treatment groups (16% with CRT, 14% with induction followed by RT and 15% with RT)

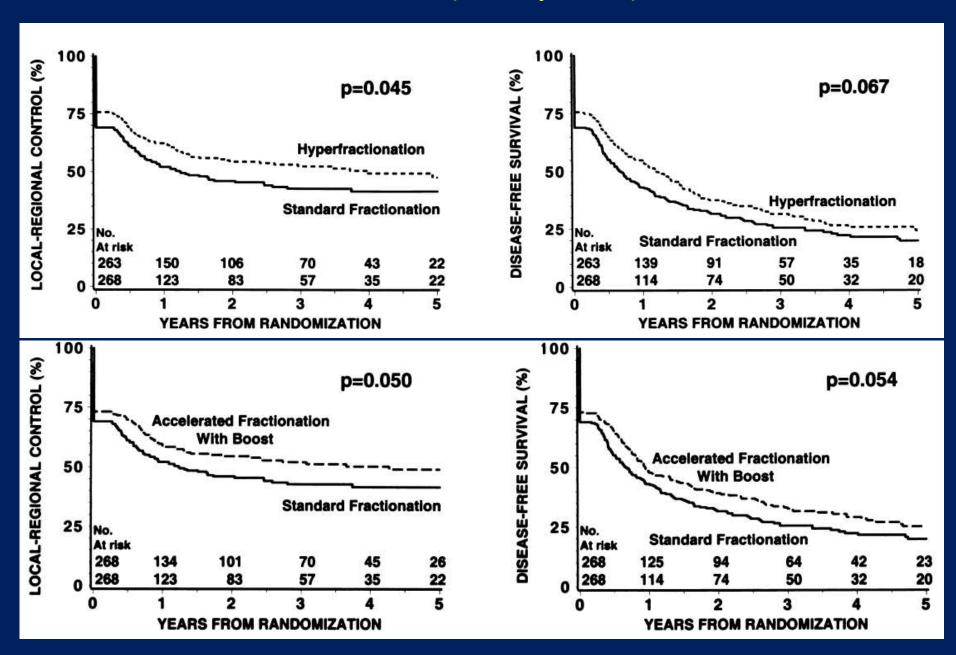
However, not all patients are suitable for CT based organ preservation

Role of altered fractionation...

A RADIATION THERAPY ONCOLOGY GROUP (RTOG) PHASE III RANDOMIZED STUDY TO COMPARE HYPERFRACTIONATION AND TWO VARIANTS OF ACCELERATED FRACTIONATION TO STANDARD FRACTIONATION RADIOTHERAPY FOR HEAD AND NECK SQUAMOUS CELL CARCINOMAS: FIRST REPORT OF RTOG 9003

First Report of RTOG 9003. Int J Radiat Oncol Biol Phys. 2000; 48:7-16.

- Eligibility criteria
- Age > 18 years.
- KPS > 50
- No previous RT
- Stage III-IV SCC Oral cavity, Oropharynx, Supraglottic larynx OR Stage II-IV carcinoma of BOT or Hypopharynx.


- Demographic profile
- Total no of patients: 1073
- M:F=80:20 (percentage)
- Median age 61 years
- MC site oropharynx (60%)
- Stage II (3.4%), III (28.3%) and IV (68.3%)

Median follow-up: 23 months for all analyzable & 41.2 months for surviving patients.

Randomization 1073 patients

Arm1	Arm2	Arm3	Arm4
SFX	HFX	AFX-S	AFX-C
2 Gy/fraction OD	1.2 Gy/fraction BD	1.6 Gy/fraction	1.8 Gy/fraction
5 days/week	5 days/week	5 days/week	5 days/week to large field + 1.5 Gy/fraction to boost in last 12 #
70 Gy/35 #	81.6 Gy/ 68 #	67.2 Gy/42 # 2-week rest after 38.4 Gy	72 Gy/42 #
7 weeks	7 weeks	6 weeks	6 weeks

Results (at 2 years)

Tumour Control Outcomes

Table 2. 2-Year local-regional control, disease-free survival, and overall	survival b	y treatment
--	------------	-------------

2-Year endpoints	Standard fractionation $(N = 268)$	Hyper- fractionation $(N = 263)$	Accelerated fractionation with split $(N = 274)$	Accelerated fractionation with concomitant boost $(N = 268)$
Local-regional control	46.0%	54.4%	47.5%	54.5%
Disease-free survival	31.7%	37.6%	33.2%	39.3%
Overall survival	46.1%	54.5%	46.2%	50.9%

Conclusion:

- HFX and AFX-C had significantly better LRC than SFX / AFX-S
- Trend towards improved DFS with both but no significant difference in OS

Toxicity Outcomes > Grade III

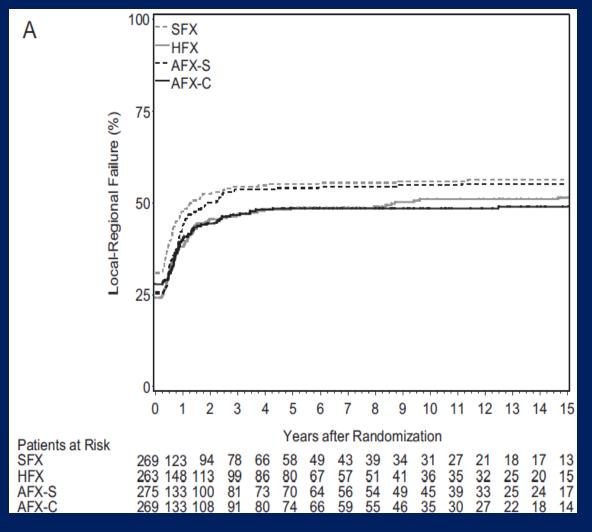
	Acute Toxicity	p value (to SFX)	Late Toxicity	p value (to SFX)
SFX	35%		26.8%	
HFX	54.5%	<0.0001	28%	NS
AFX-S	50.4%	0.0002	27.6%	NS
AFX-C	58.8%	<0.0001	37.2%	0.011

Conclusions:

- AF had more acute toxicities.
- AFX-C had more late effects + consequential late effects

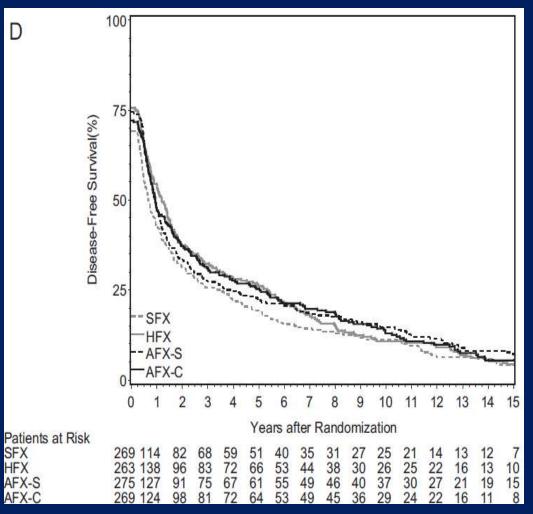
International Journal of Radiation Oncology biology • physics

www.redjournal.org

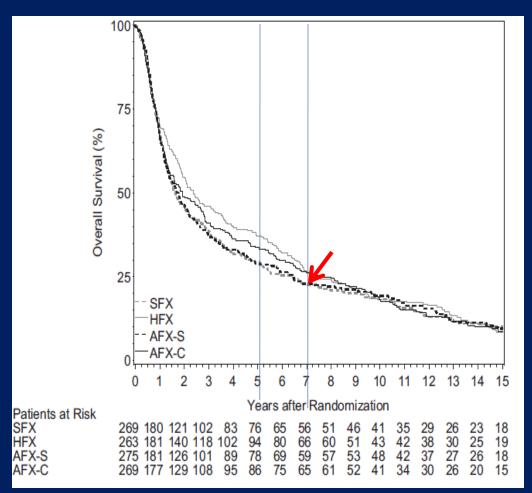

Clinical Investigation: Head and Neck Cancer

Final Results of Local-Regional Control and Late Toxicity of RTOG 9003: A Randomized Trial of Altered Fractionation Radiation for Locally Advanced Head and Neck Cancer

Jonathan J. Beitler, MD, MBA,* Qiang Zhang, PhD,† Karen K. Fu, MD,‡ Andy Trotti, MD,§ Sharon A. Spencer, MD, Christopher U. Jones, MD,¶ Adam S. Garden, MD,# George Shenouda, MD,** Jonathan Harris, MS,† and Kian K. Ang, MD, PhD (deceased)#


- Censoring of events at 5 years (97% local recurrences in 5 years, ? SMN afterwards)
- Median F/U of 14.1 years.

LRC


- HFX Vs SFX
- p 0.045 & 0.05 (censored)
- AFX-C Vs SFX
- p 0.05 & 0.82 (censored)
- 19% reduction of LR failure with HFX & AFX-C

DFS

- p for HFX 0.04,
- p for AFX-S 0.05
- p for AFX-C 0.05
- Compared to SFX, DFS was improved in all experimental arms

OS

- When death was censored at 5 years, HFX had significantly better results compared to other arms (p 0.05)
- Survival curves rejoined at 7 years (peak of late toxicity induced deaths).

Toxicity Outcomes

- No difference in toxicities in experimental arms compared to SFX
- Pooled cohort of accelerated patient: might have increased toxicity (p 0.06)
- On individual patient toxicity assessment, trend towards increased toxicity with AFX-C (p 0.09)

Conclusions of RTOG 9003

- HFX and AFX-C has significant benefit over SFX or AFX-S in terms of LC.
- HFX has OS benefit if events are censored at 5 years.
- Trend of higher toxicities with AFX-C.
- HFX has the most optimal therapeutic ratio.
- ? HFX in place of CTRT to reduce CTRT late toxicity induced deaths (eg. RTOG 9111)
- IMRT based intensification (HFX / AFX-C with IMRT) has potential improved therapeutic ratio.

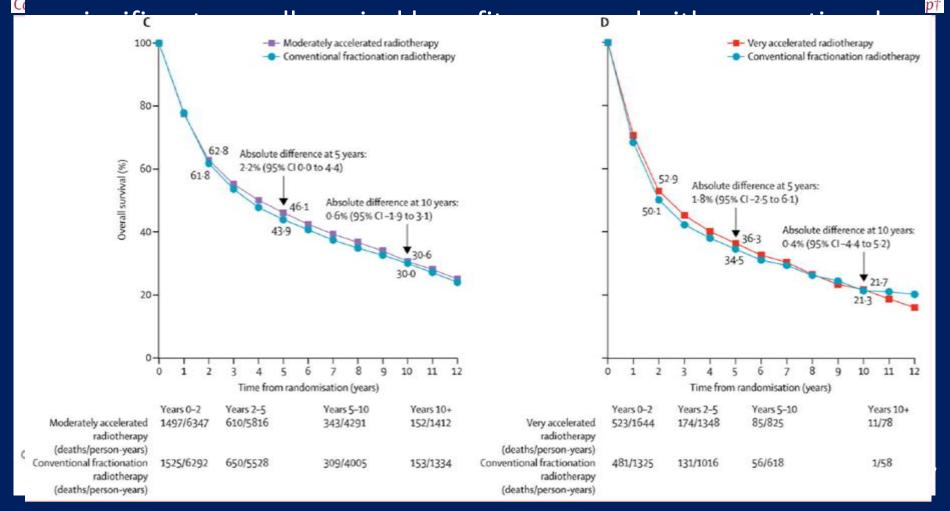
MARCH Meta-analysis

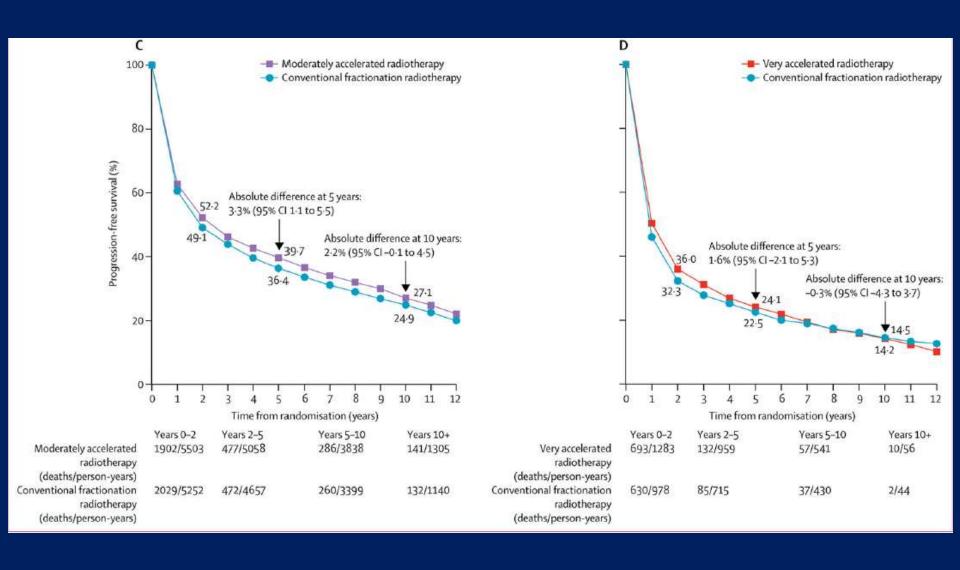
Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis

Jean Bourhis, Jens Overgaard, Hélène Audry, Kian K Ang, Michele Saunders, Jacques Bernier, Jean-Claude Horiot, Aurélie Le Maître, Thomas F Pajak, Michael G Poulsen, Brian O'Sullivan, Werner Dobrowsky, Andrzej Hliniak*, Krzysztof Składowski, John H Hay, Luiz H J Pinto, Carlo Fallai, Karen K Fu, Richard Sylvester, Jean-Pierre Pignon, on behalf of the Meta-Analysis of Radiotherapy in Carcinomas of Head and neck (MARCH) Collaborative Group

Lancet 2006; 368: 843-54

See Comment page 819


Published Online August 17, 2006 DOI:10.1016/S0140-6736(06)69121-6


- 15 trials with 6515 patients were evaluated.
- Median follow-up 6 yrs.
- Tumours sites mostly oropharynx and larynx (44 and 34% respectively)
- 74% had stage III–IV tumours

Role of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysis 33 Trials

Benjamin Lacas, Jean Bourhis, Jens Overgaard, Qiang Zhang, Vincent Grégoire, Matthew Nankivell, Björn Zackrisson, Zbigniew Szutkowski, Rafał Suwiński, Michael Poulsen, Brian O'Sullivan, Renzo Corvò, Sarbani Ghosh Laskar, Carlo Fallai, Hideva Yamazaki, Werner Dobrowsky.

Altered fractionation radiotherapy was associated with a

- Altered fractionation radiotherapy was associated with significantly reduced cancer mortality, local failure, and regional failure.
- No significant differences were reported between conventional radiotherapy and altered fractionation radiotherapy in terms of noncancer mortality or distant failure.
- Although no interaction was reported between altered fractionation regimens and the effect on local or regional control, hyperfractionation was associated with a reduction in local and regional failures.
- Moderately fractionated-Reduction in local failure
- Very Accelerated No effect in reduction of local + regional failure

When the analysis was restricted to node-positive patients, the interaction between altered fractionated regimens and regional control was not significant, but the effect of altered fractionated radiotherapy was signification for hyperfractionated radiotherapy.	
The survival benefit decreased when age increased	

• Pure acceleration should therefore be considered only for patient with low

nodal burden.

Although altered fractionation served as a good option in patients in whom chemotherapy could not be given, better options were needed ...

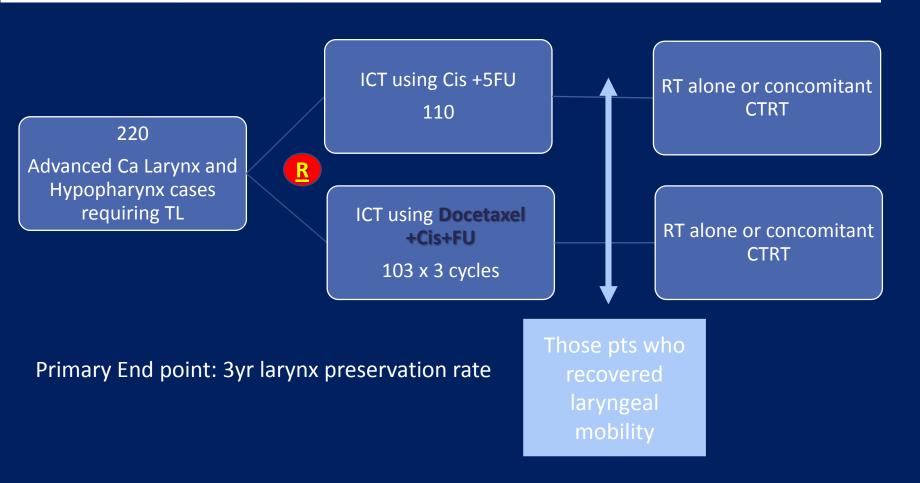
2 options:

A. Intensification of Induction chemotherapy

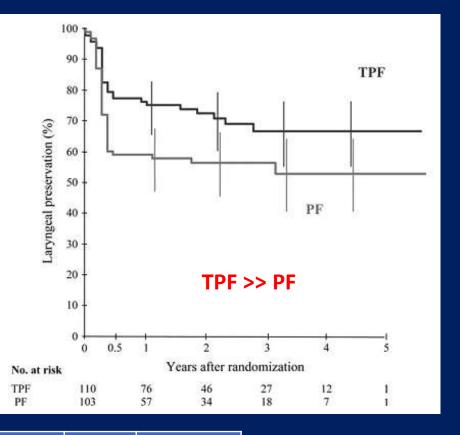
B. More intensive local therapy > Induction f/b concomitant chemotherapy .

The demonstration in locally advanced HNSCC mixed-site trials of a higher response rate to TPF compared with PF led investigators to postulate that induction TPF would improve the rates of LP and local control.

Role of Taxane based ICT


GORTEC 2000-01
TAX 323/324
Meta-analysis

EORTC 24971/TAX 323 Study Group* 2007 Vs TAX 324


	TAX 323	TAX 324		
Dose of CDDP / 5FU	75 mg/m² / 750 mg/m²	100 mg/m² / 1000 mg/m²		
Patients	350	250		
Primary End Point	PFS (HR 0.67)	OS (HR 0.65)		
Control Grov				
Illicius	f docetaxel to PF induction chemot e squamous-cell carcinoma of the l			
Local Ri Su	rvival and was better tolerated tha regimen.	n the classic PF		
Neck Dissection	Considered for all patients	Selected		
Hypopharyngeal cance.	29.3%	14%		
T4	73%	42%		
N2-3	71.8%	64%		

Randomized Trial of Induction Chemotherapy With Cisplatin and 5-Fluorouracil With or Without Docetaxel for Larynx Preservation

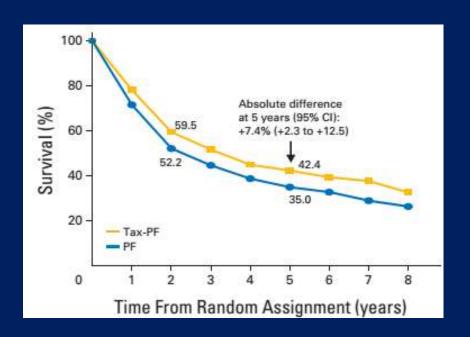
Yoann Pointreau, Pascal Garaud, Sophie Chapet, Christian Sire, Claude Tuchais, Jacques Tortochaux, Sandrine Faivre, Stephane Guerrif, Marc Alfonsi, Gilles Calais

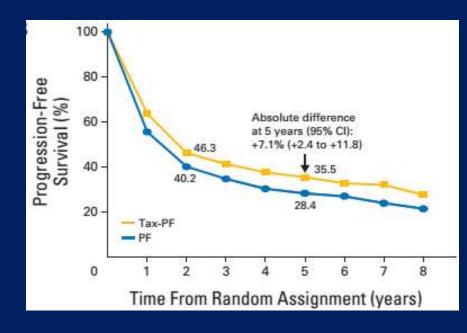
Characteristic	TPF (N = 110)	PF (N = 103)	P
Age, y			.82
Mean	57	56	
Range	33-72	37-75	
Sex, No. (%)			.59
Male	101 (91.8)	97 (94.2)	
Female	9 (8.2)	6 (5.8)	
Karnofsky performance status, No. (%)			.21
100	51 (46.4)	51 (49.5)	
90	41 (37.2)	28 (27.2)	
80	18 (16.4)	24 (23.3)	
Site of primary tumor, No. (%)	40 192	80 29	.68
Hypopharynx	61 (55.5)	54 (52.4)	
Larynx	49 (44.5)	49 (47.6)	
Stage of primary tumor, No. (%)			.14
T2	15 (13.6)	24 (23.3)	
T3	80 (72.8)	63 (61.2)	
T4	15 (13.6)	16 (15.5)	
Node stage, No. (%)	A DECINATION OF THE	1.100/12/2005/09/09	.16
NO	36 (32.7)	48 (46.6)	
N1	28 (25.5)	22 (21.4)	
N2a	12 (10.9)	9 (8.7)	
N2b	13 (11.8)	15 (14.6)	
N2c	14 (12.7)	7 (6.8)	
N3	7 (6.4)	2 (1.9)	

Outcomes	TPF	PF	P value
Larynx preservation @ 3 years	70.3%	57.5%	0.03
Overall response to ICT	80%	59%	0.002

GORTEC 2000-01: Conclusions

Long Term results @ 105 months


Laryngeal dysfunction free survival was significantly better in TPF arm.


Statistically fewer grade 3–4 late toxicities of the larynx occurred with the TPF

In patients with **advanced larynx and hypopharynx carcinomas**, TPF induction chemotherapy was superior to the PF regimen in terms of overall response rate.

Taxane-Cisplatin-Fluorouracil As Induction Chemotherapy in Locally Advanced Head and Neck Cancers: An Individual Patient Data Meta-Analysis of the Meta-Analysis of Chemotherapy in Head and Neck Cancer Group

Pierre Blanchard, Jean Bourhis, Benjamin Lacas, Marshall R. Posner, Jan B. Vermorken, Juan J. Cruz Hernandez, Abderrahmane Bourredjem, Gilles Calais, Adriano Paccagnella, Ricardo Hitt, and Jean-Pierre Pignon on behalf of the Meta-Analysis of Chemotherapy in Head and Neck Cancer, Induction Project, Collaborative Group

- TPF significantly improves OS, PFS, loco-regional and distant failure compared with PF.
- TPF is associated with a better compliance.
- More patients in the TPF group proceeded to conc CTRT, likely reflecting the higher response rates.

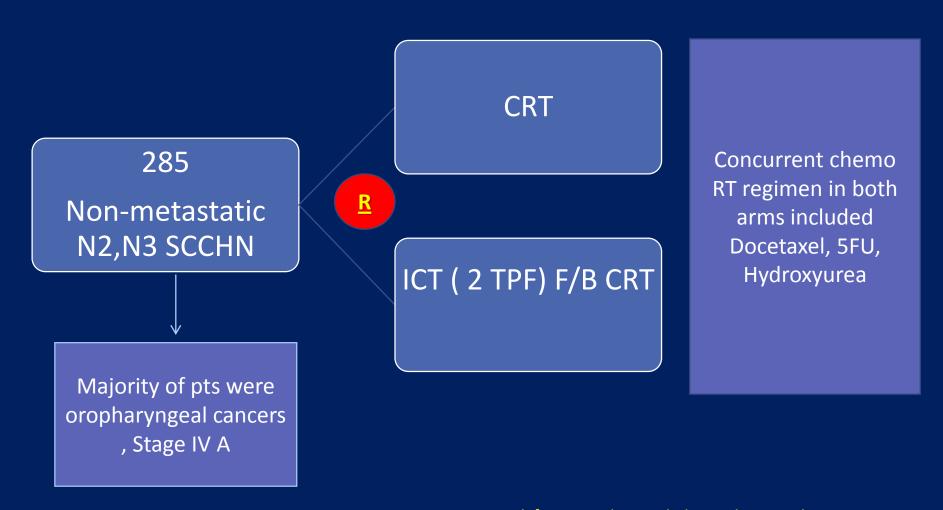
Would induction chemotherapy (IC) be more likely to demonstrate an improvement in survival if two other conditions were met??

- Use of a CRT regimen achieving high rates of locoregional control and
- Treatment of patients at greatest risk for distant metastatsis

2013 - PARADIGM

Induction chemotherapy followed by concurrent chemoradiotherapy) versus concurrent chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial

Robert Haddad, Anne O'Nelli, Guilherme Rabinowits, Roy Tishler, Fadio Khuri, Douglas Adkins, Joseph Clark, Nicholas Sarlis, Jochen Lorch, Jonathan J Beitler, Sewanti Limaye, Sarah Riley, Marshall Posner


Methods Adult patients with previously untreated, non-metastatic, newly diagnosed head and neck cancer were eligible. Patients were eligible if their tumour was either unresectable or of low surgical curability on the basis of advanced tumour stage (3 or 4) or regional-node stage (2 or 3, except T1N2), or if they were a candidate for organ preservation. Patients were randomly assigned (in a 1:1 ratio) to receive either induction chemotherapy with three cycles of TPF followed by concurrent chemoradiotherapy with either docetaxel or carboplatin or concurrent chemoradiotherapy alone with two cycles of bolus cisplatin. A computer-generated randomisation schedule using minimisation was prepared and the treatment assignment was done centrally at one of the study sites. Patients, study staff, and investigators were not masked to group assignment. Stratification factors were WHO performance status, primary disease site, and stage. The primary endpoint was overall survival. Analysis was by intention to treat. Patient accrual was terminated in December, 2008, because of slow enrolment. The trial is registered with ClinicalTrials.gov, number NCT00095875.

Findings Between Aug 24, 2004, and Dec 29, 2008, we enrolled 145 patients across 16 sites. After a median follow-up of 49 months (IQR 39–63), 41 patients had died—20 in the induction chemotherapy followed by chemoradiotherapy group and 21 in the chemoradiotherapy alone group. 3-year overall survival was 73% (95% CI 60–82) in the induction therapy followed by chemoradiotherapy group and 78% (66–86) in the chemoradiotherapy alone group (hazard ratio $1\cdot09$, 95% CI $0\cdot59-2\cdot03$; p= $0\cdot77$). More patients had febrile neutropenia in the induction chemotherapy followed by chemoradiotherapy group (16 patients) than in the chemoradiotherapy alone group (one patient).

Interpretation Although survival results were good in both groups there was no difference noted between those patients treated with induction chemotherapy followed by chemoradiotherapy and those who received chemoradiotherapy alone. We cannot rule out the possibility of a difference in survival going undetected due to termination of the trial. Clinicians should still use their best judgment, based on the available data, in the decision of how to best treat patients. The addition of induction chemotherapy remains an appropriate approach for advanced disease with high risk for local or distant failure.

Phase III Randomized Trial of Induction Chemotherapy in Patients With N2 or N3 Locally Advanced Head and Neck Cancer

Ezra E.W. Cohen, Theodore G. Karrison, Masha Kocherginsky, Jeffrey Mueller, Robyn Egan, Chao H. Huang, Bruce E. Brockstein, Mark B. Agulnik, Bharat B. Mittal, Furhan Yunus, Sandeep Samant, Luis E. Raez, Ranee Mehra, Priya Kumar, Frank Ondrey, Patrice Marchand, Bettina Braegas, Tanguy Y. Seiwert, Victoria M. Villaflor, Daniel J. Haraf, and Everett E. Vokes

2014 – DeCide[Docetaxel- Based Chemotherapy Plus or Minus IC to Decrease Events in Head and Neck Cancer], JCO

3-year Outcomes								
Endpoint	IC arm (%)	CRT arm (%)	HR	95% CI	P value			
Overall Survival	75	73	0.92	0.59-4.42	0.70			
Distant-Failure Free Survival	69	64	0.84	0.56-1.26	0.39			
Recurrence Free Survival	67	58	0.76	0.52-1.13	0.18			
Cumulative incidence of distant failure	10	19	0.46	0.23-0.92	0.025			
Cumulative incidence of locoregional failure	9	12	0.79	0.37-1.68	0.55			

- Only grade 3-4 leukopenia and neutropenia rates were significantly higher in induction chemotherapy.
- Although there was a statistically significant improvement in cumulative incidence of distant metastases in the induction chemotherapy arm, there was no improvement in overall survival.

Why the negative results?

 Only 79% of patients received the intended two doses of NACT.

- Unrealistic expectation of 15% absolute increment in 3year overall survival with NACT. (The absolute survival benefit of cisplatin and fluorouracil induction chemotherapy in accordance with metaanalysis of chemotherapy in head and neck cancer was 2.4%.)
- Believing that adding taxane to this regimen would lead to an absolute improvement of more than 10% in overall survival was therefore unrealistic.

Meta-analysis of Sequential vs Concomitant Chemotherapy in LA-HNSCC

Five prospective randomized controlled trials (RCTs) with **922 patients** were included in meta-analysis-

No significant differences in OS,PFS, LRR

IC→CCRT could increase risks of grade 3–4 febrile neutropenia (P = 0.0009) and leukopenia (P = 0.04).

Distant metastasis rate (DMR) decreased (P = 0.006) and complete response rate (CR) improved (P = 0.010) for IC with CCRT.

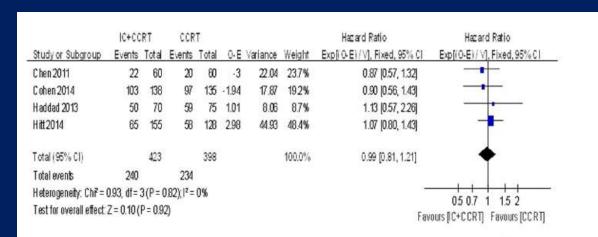


Figure 3. Forest plots of hazard ratios (HRs) for 3-year overall survival (OS) in a fixed-effects model.

	IC+CC	RT	CCR	T		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H, Random, 9	5% CI
Chen 2011	39	60	16	60	24.5%	2.44 [1.54, 3.86]	-	-
Cohen 2014	30	114	26	122	24.5%	1.23 [0.78, 1.95]		-
Hitt 2014	76	155	51	128	32.2%	1.23 [0.94, 1.61]	-	
Paccagnella 2010	23	46	10	47	18.8%	2.35 [1.26, 4.37]		
Total (95% CI)		375		357	100.0%	1.64 [1.13, 2.40]	•	>
Total events	168		103				(2)	
Heterogeneity: Tau? =	0.10; Chi ²	= 9.15	df = 3 (P	= 0.03); I ² = 679	6	02 05 1	1 1
Test for overall effect:	Z = 2.59 (P = 0.0	10)				0.2 0.5 1 Favours [CCRT] Favo	urs [IC+CCF

Figure 5. Forest plots of relative risk ratio (RR) for post concurrent chemoradiotherapy of complete response rate (Post-CCRT of CR) in a random-effects model.

Meta-analysis Induction chemotherapy with concurrent chemoradiotherapy versus concurrent chemoradiotherapy for locally advanced squamous cell carcinoma of head and neck, scientific reports, Nature, 2013

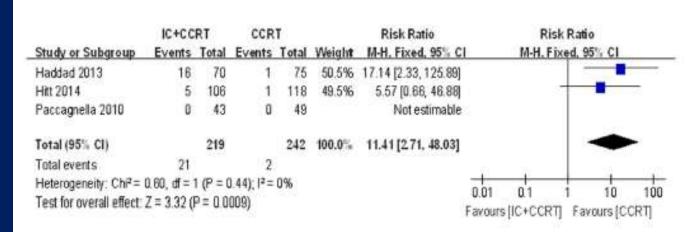


Figure 7. Forest plots of relative risk ratio (RR) for grade 3-4 febrile neutropenia during CCRT period in a fixed-effects model.

	IC+CCRT		CCRT		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fix	ed, 95% CI
Chen 2011	7	60	8	60	19.4%	0.88 [0.34, 2.26]	_	
Cohen 2014	32	124	15	133	35.0%	2.29 [1.30, 4.02]		-
Hitt 2014	16	106	14	118	32.1%	1.27 [0.65, 2.48]	-	-
Paccagnella 2010	3	43	6	49	13.6%	0.57 [0.15, 2.14]		
Total (95% CI)		333		360	100.0%	1.46 [1.01, 2.10]		•
Total events	58		43					
Heterogeneity: Chif = :	5.67, df = 3	3 (P = (0.13); 2=	47%			0.01 0.1	1 10 100
Test for overall effect			And the second second				0.01 0.1 Favours (IC+CCRT)	1 10 100 Favours (CCRT)

Figure 8. Forest plots of relative risk ratio (RR) for grade 3-4 leukopenia during CCRT period in a fixed-effects model.

ORIGINAL ARTICLE

Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial

M. G. Ghi", A. Pacosprelle, D. Ferner', P. Foe', D. Alterio', C. Godech', F. Nose', E. Vent', R. Dreochia'

421 patients were finally analyzed: 206 in the IC and 208 in the no-IC arm.

With a median follow-up of 44.8 months, OS significantly higher in the IC arm (HR 0.74; 95% CI 0.56–0.97; P%0.031).

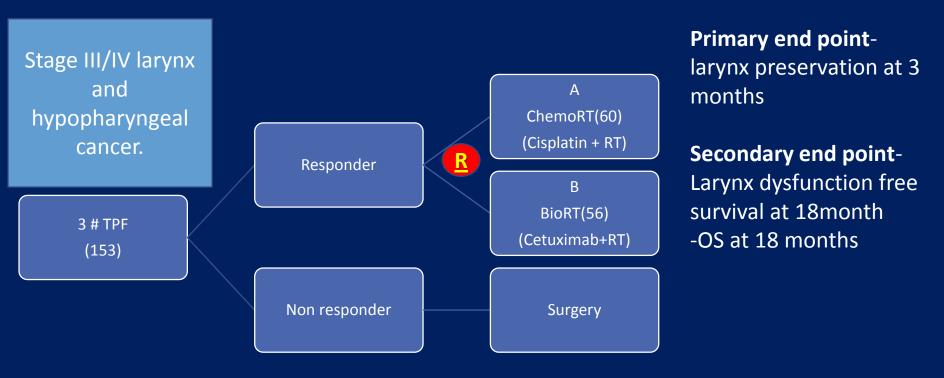
Complete Responses (0.0028), PFS (0.013) and LRC (0.036) also significantly higher in the IC arm.

Compliance to concomitant treatments was not affected by induction TPF.

Annals of Oncology 0.8 0.7 0.6 0.6 0.5 0.5 A: 128 (61.2 %) A: 107 (51.9 %) Log-rank: Chi2-4.60 df-1 p=0.030 HR-0.74 (96% Cl 0.56 - 0.97) p=0.031 not adjusted Log-rank: Chi2=6.20 df±1 p=0.013 HR±0.72 (95% Cl 0.56 - 0.03) p=0.013 not adjusted HR-0.73 (95%, C) 0.55 - 0.07) p-0.029 adjudge HR-0.72 (95%, Cl 0.55 - 0.03) p=0.013 adjusts 0.9 0.9 HR::0.74 (95% C) 0.55 - 0.98) p:=0.0305 HR::0.78 (95% CI 0.46-1.25) p::2747 0.6 Number of events 0.5 0.5 A: 00 (48 1 %) 0.4 0.4 B: 85 (40.9 %) 0.3 0.3

Figure 2. Kaplan–Meier curves for OS (A) and PFS (B) of IC versus no-IC and cumulative incidence (competing risk analysis) for loco-regional*
(C) and distant events (D). *Loco-regional progression, death from cancer without documented progression or death from unknown causes were considered loco-regional failure.

Role of biological modifiers??


In view of increased toxicities with concurrent chemoradiation thereby affecting OS and QOL

Role of Biological modifiers with RT was explored in Organ preservation.

Induction Chemotherapy Followed by Either Chemoradiotherapy or Bioradiotherapy for Larynx Preservation: The TREMPLIN Randomized Phase II Study

Jean Louis Lefebvre, Yoann Pointreau, Frederic Rolland, Marc Alfonsi, Alain Baudoux, Christian Sire, Dominique de Raucourt, Olivier Malard, Marian Degardin, Claude Tuchais, Emmanuel Blot, Michel Rives, Emile Reyt, Jean Marc Tourani, Lionel Geoffrois, Frederic Peyrade, Francois Guichard, Dominique Chevalier, Emmanuel Babin, Philippe Lang, Francois Janot, Gilles Calais, Pascal Garaud, and Etienne Bardet

See accompanying editorial doi: 10.1200/JCO.2012.45.8976

- --Despite a higher number of local failures in the B arm, after salvage surgery, the ultimate local failure rate seemed comparable.
- -Comparable grade 3-4 toxicities in both arms. (more in field skin toxicity in BioRT arm)

Cisplatin

Cetuvimah

P value

	0.00		18 Mo reatme	201800	Patients at Last Evaluation*			
	Cisplatin		Cetu	ximab	Cisplatin Cetux		ximab	
Variable	No.	%	No.	%	No.	%	No.	%
Local (with or without regional) failure	5†	8.3	8	14.3	8	13.3	12	21.4
Surgery feasible	0	5	7	8	1	8	9‡	12
Surgery successful					0	1	6	8
Ultimate local failure					8	13.3	6	10.7
Regional failure only	5	8.3	5	8.9	4	6.7	5	8.9
Surgery feasible					1	4	4	5
Surgery successful					0	1	1	4
Ultimate regional failure					4		4	
Distant metastases					5	8.3	3	5.4

^{*}Median follow-up, 36 months; maximum follow-up, 58 months in each arm. †One patient with uncontrolled disease lost to follow-up.

Second primary cancer

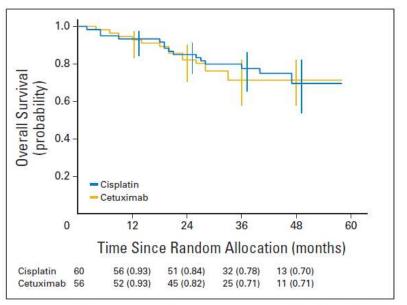


Fig 2. Overall survival (intent to treat) for the subgroup of patients who were responding to induction chemotherapy.

Table 1 EMPLIN trial: Compliance and larynx preservation [6]

Post-TPF induction treatme

Raised the possibility that for larynx cancer, EGFR inhibition/RT may be inferior to cisplatin/RT for achieving local control, both cetuximab/RT and cisplatin/RT were difficult to administer after induction TPF.

However BioRT is better tolerated than CTRT

Laryh rvation rate 3 months after treatment, n (%)°

55 (92)

54 (96)

[‡]One patient refused all further treatment, including salvage surgery.

Induction chemotherapy followed by cisplatin or cetuximab concomitant to radiotherapy for laryngeal/hypopharyngeal cancer: Long-term results of the TREMPLIN randomised GORTEC trial

radiotherapy (70 Gy) with concurrent cisplatin (100 mg/m²/day on days 1, 22 and 43 of radio-

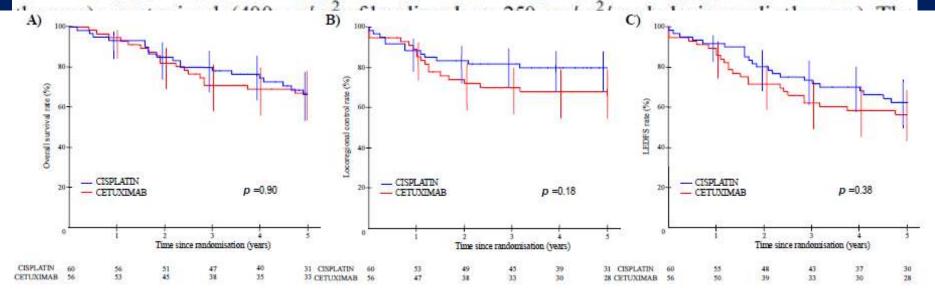
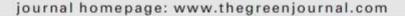


Fig. 2. Efficacy results at 5 years. (A) Overall survival (OS) rates were not statistically different (p = 0.9, two-sided log-rank test). (B) Locoregional control rates (LCRs) were not statistically different (p = 0.18, two-sided log-rank test). (C) Laryngo-oesophageal dysfunction-free survival (LEDFS) rates were not statistically different (p = 0.38, two-sided log-rank test).

toxicity was not statistically different between the two arms. LEDFS appears as a relevant end-point.

MACH NC 2017 update

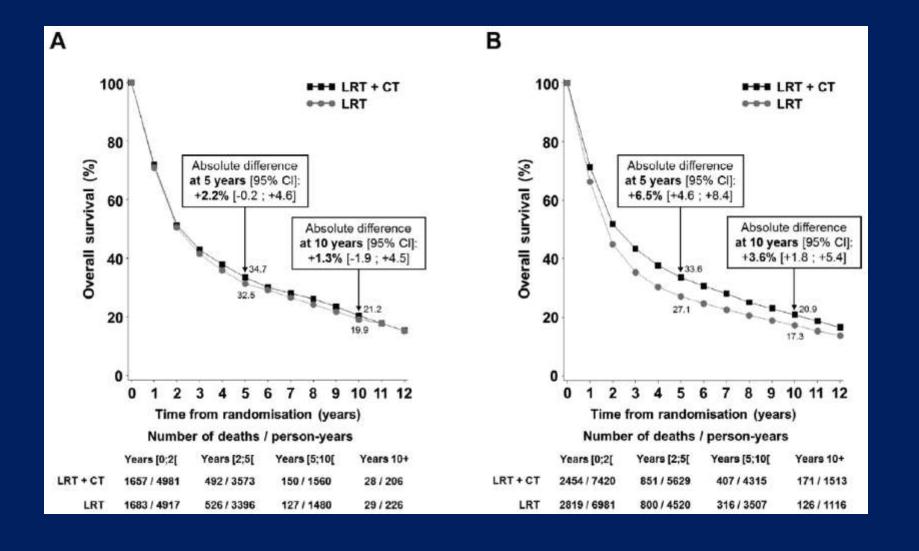
	Rank	Network	Number of	
Treatment comparison	, and a	HR	CI 95%	trials per comparison
Compared to platinum-based CRT	1	- A	507	530
HECRT	1	0.80	[0.65-0.99]	2
IC (TaxPF) followed by LRT	2	0.90	[0.73-1.12]	0
ACRT	3	0.97	[0.85-1.10]	4
IC [TaxPF] followed by CRT	4	0.98	[0.80-1,21]	3
Compared to LRT		- 5	\$75.	- to
HECRT	1	0.62	[0.51-0.76]	2
IC (TaxPF) followed by LRT	2	0.70	[0.57-0.86]	1
ACRT	3	0.75	[0.67-0.85]	1
IC (TaxPF) followed by CRT	4	0.76	[0.62-0.94]	o
Platinum-based CRT	5	0.77	[0.72-0.83]	23
			- I i i i i i i i i i i i i i i i i i i	


Tax-PF= Taxane, Platin and 5-Fluorouracil.

Supported by INCa (PHRC, PAIR-VADS) and LNCC

Contents lists available at ScienceDirect

Radiotherapy and Oncology



Original Article

Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group

Benjamin Lacas ^{a,b}, Alexandra Carmel ^a, Cécile Landais ^a, Stuart J. Wong ^c, Lisa Licitra ^d, Jeffrey S. Tobias ^e, Barbara Burtness ^f, Maria Grazia Ghi ^g, Ezra E.W. Cohen ^h, Cai Grau ⁱ, Gregory Wolf ^j, Ricardo Hitt ^k, Renzo Corvò ^l, Volker Budach ^m, Shaleen Kumar ⁿ, Sarbani Ghosh Laskar ^o, Jean-Jacques Mazeron ^p, Lai-Ping Zhong ^q, Werner Dobrowsky ^r, Pirus Ghadjar ^s, Carlo Fallai ^t, Branko Zakotnik ^u, Atul Sharma ^v, René-Jean Bensadoun ^w, Maria Grazia Ruo Redda ^x, Séverine Racadot ^y, George Fountzilas ^z, David Brizel ^{aa}, Paolo Rovea ^{ab}, Athanassios Argiris ^{ac}, Zoltán Takácsi-Nagy ^{ad}, Ju-Whei Lee ^{ae}, Catherine Fortpied ^{af}, Jonathan Harris ^{ag}, Jean Bourhis ^{b,ah}, Anne Aupérin ^{a,b}, Pierre Blanchard ^{a,b,ai,*}, Jean-Pierre Pignon ^{a,b}, on behalf of the MACH-NC Collaborative Group

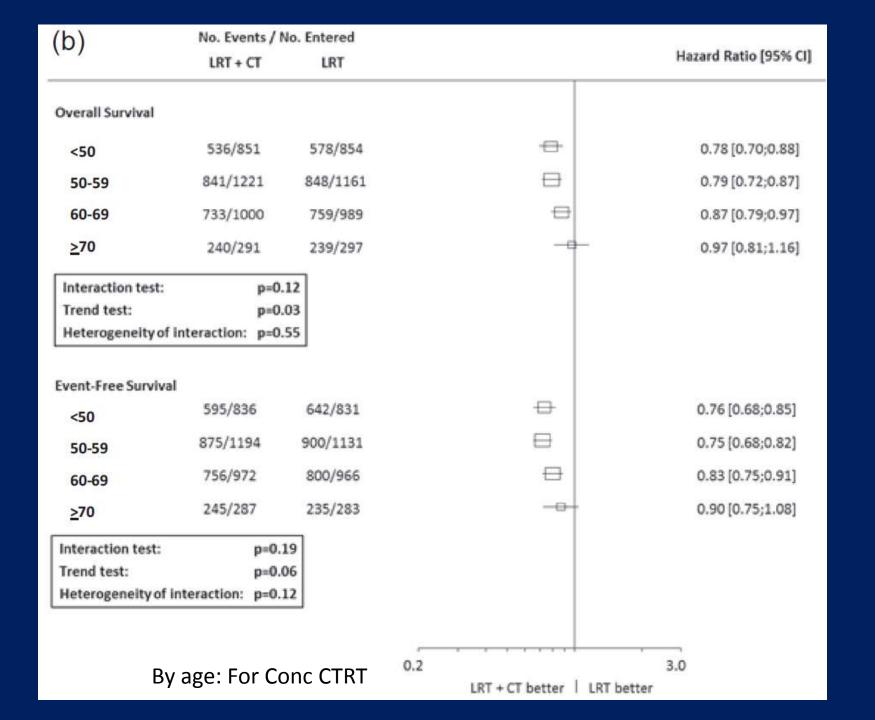


Table 1 Results of the addition of chemotherapy to loco-regional treatment,

Overall survival

p < 0.0001

p = 0.0002 (42%)

+6.5%

[+4.6;+8.4]

+3.6%

[+1.8;+5.4]

1605/2915

1.02 [0.92;1.13]

120-day mortality

p = 0.37

p = 0.01 (30%)

NA

NA

127/2915

1.89 [1,33;2.68]

No. events/No. patients HR of chemotherapy effect [95% CI]; p-value	4692/7054 0.96 [0.90; 1.01] p = 0.14	470/7054 1.07 [0.89;1.28] p = 0.47	4556/6374 0.96 [0.90;1.02] p = 0.14	979/2031 0.97 [0.86;1.10] p = 0.67	320/2031 0.84 [0.67;1.05] p = 0.12	2574/6342 1.07 [0.99;1.15] p = 0.09	761/5582 0.76 [0.66;0.88] p = 0.0002
Heterogeneity: p-value (I2)	p = 0.63 (0%)	p = 0.46 (1%)	p = 0.25 (12%)	p = 0.24 (19%)	p = 0.28 (16%)	P < 0.0001 (63%)	P < 0.0002
Absolute difference at 5 years [95% CI]	+2.2% [-0.2;+4.6]	NA	+1.4% [-0.9;+3.7]	-0.7% [-5.5;+4.1]	-4.8% [-0.4;-9.2]	+3.2% [+0.8;+5.7]	-4.1% [-6.0;-2.2]
Absolute difference at 10 years [95% CI]	+1.3% [-1.9;+4.5]	NA	-0.6% [-3.6;+2.4]	NA	NA	+4.6% [+1.7;+7.5]	-3.5% [-5.7;-1.3]
Concomitant							
No. events/No. patients HR of chemotherapy effect 195% CII: p-value	7944/10,680 0.83 [0.79:0.86]	716/10,680	8345/10,457 0.80 [0.77:0.84]	3730/6483 0.79 [0.74:0.84]	955/6483 1.01 [0.89:1.16]	4766/10,076 0.71 [0.67:0.75]	1034/9022

p < 0.0001

p = 0.04(24%)

+5.8%

[+4.1:+7.5]

+3.1%

|+1.5;+4.7|

1461/2416

0.98 [0.88;1.09]

Event-free survival

Cancer mortality[®]

p < 0.0001

p = 0.18 (18%)

-9.8%

[-12.4;-7.2]

NA

NA

NA

Non-cancer mortality[®]

p = 0.83

p = 0.80 (0%)

+2.9%

[+0.1;+5.7]

NA

NA

NA

Loco-regional failure*

p < 0.0001

P < 0.0001 (85%)

-9.3%

[-11.3;-7.3]

-9.6%

[-11.6;-7.5]

571/2416

0.84 [0.72;1.00]

Distant failure*

p = 0.48

P < 0.0001 (96%)

+0.2%

[-1.0;+1.6]

+0.2%

[-1.2;+1.6]

324/2224

0.77 [0.62;0.96]

Heterogeneity:	p-value	(1^2)

Induction

Absolute difference at 5 years [95% CI]

Absolute difference at 10 years [95% CI]

Adjuvant No. events/No. patients HR of chemotherapy effect [95% CI]; p-value

	p = 0.69	p = 0.0003	p = 0.72			p = 0.04	p = 0.02
leterogeneity: p-value (12)	p = 0.21 (23%)	p = 0.10 (34%)	p = 0.03 (47%)	NA	NA	p = 0.16 (29%)	P < 0.0001 (98%)
bsolute difference at 5 years [95% CI]	-0.3%	NA	0.6%	NA	NA	-3.7%	-3.0%
	[-4.3;+3.7]		[-5.0;+3.8]			[-7.2;-0.2]	[-6.0;0.0]
bsolute difference at 10 years [95% CI]	+1.2%	NA	+3.6%	NA	NA	-3.6%	-3.2%
	[-4.1;+6.5]		[-2.7;+9.9]			[-7.2;0.0]	[-6.5;+0.2]
nteraction test (timing × treatment effect)	p < 0.0001	0.01	p < 0.0001	P = 0.003	P = 0.15	p < 0.0001	P = 0.001

ICTAYPE-LRT

Randomised controlled trials Comparisons Patients	115 154	112	110	100
The state of the s	154			100
Patients		151	150	137
	28 978	28315	27309	25042
Events	19253	20 579	10882	3065
Gobal p value	0-074	0.11	<0.0001	<0.0001
p value for heterogeneity	0.013	0.054	<0.0001	<0.0001
p value for inconsistency	0-91	0.52	0.0008	<0.0001
Hazard ratio (95% CI); P score (%)				
Locoregional therapy	1 (ref); 21%	1 (ref); 12%	1 (ref); 15%	1 (ref); 33%
HECRT	0.63 (0.51-0.77)*; 97%†	0.60 (0.49-0.73)*; 97%†	0.49 (0.30-0.78)*; 88%†	1.15 (0.15-8.99); 32%
ocoregional therapy	1 (ref); 21%	1 (ref); 12%	1 (ref); 15%	1 (ref); 33%
FCRT	0-63 (0-51-0-77)*; 97%†	0.60 (0.49-0.73)*; 97%†	0-49 (0-30-0-78)*; 88%+	1-15 (0-15-8-99); 329
nterpretation The res	ults of this network r	neta-analysis suggest tha	at further intensifying ch	emoradiotherapy, usin

HFCRT or IC_{TaxPF}-CLRT, could improve outcomes over chemoradiotherapy for the treatment of locally advanced head and neck cancer.

a meen cameen					
Τ,	0.77 (0.72-0.83)*;78%	0.74 (0.70-0.79)*; 75%	0-54 (0-46-0-65)*; 84%†	1.36 (0.61-2.99); 2	3%
T	0-85 (0-76-0-95)*; 61%	0-84 (0-76-0-93)*; 55%	0.81 (0.59-1.11); 42%	0-32 (0-08-1-27); 71	%
VAKI	0.30 (0.01-1.01), 4/ //	0.00 (0.13-0.30) 143%	0.02 (0.23-1.11)* 23.0	0.35 (0.50-4.53), 30%	Г
IC _{er} -CLRT	0.90 (0.72-1.13); 46%	0.83 (0.66-1.03); 55%	0.58 (0.31-1.06); 73%	1-47 (0-10-20-56); 29%	
MART	0.94 (0.87-1.01); 37%	0.89 (0.83-0.96)*; 40%	0.77 (0.62-0.97)*; 48%	0-47 (0-16-1-39); 59%	
LRT-AC	1-03 (0-90-1-17); 18%	0.99 (0.86-1.13); 17%	0.77 (0.53-1.13); 48%	0-16 (0-03-0-88)*; 84%†	
CLRT _{n.p} -AC	1.07 (0.84-1.36); 16%	0.95 (0.75-1.20); 28%	0-77 (0-36-1-65); 47%	0-19 (0-01-6-83); 71%†	
IC _{ottor} -CLRT	1-15 (0-73-1-82); 16%	NA‡	NA‡	NA‡	
2	RT, RT IC _{er} -CLRT MART LRT-AC CLRT _{ee} -AC	O-77 (0-72-0-83)*; 78% RT O-85 (0-76-0-95)*; 61% IC _{sr} -CLRT O-90 (0-72-1-13); 46% MART O-94 (0-87-1-01); 37% LRT-AC LRT-AC 1-03 (0-90-1-17); 18% CLRT _{sr} -AC 1-07 (0-84-1-36); 16%	RT, 0.77 (0.72-0.83)*; 78% 0.74 (0.70-0.79)*; 75% RT 0.85 (0.76-0.95)*; 61% 0.84 (0.76-0.93)*; 55% VART 0.90 (0.72-1.13); 46% 0.83 (0.66-1.03); 55% MART 0.94 (0.87-1.01); 37% 0.89 (0.83-0.96)*; 40% LRT-AC 1.03 (0.90-1.17); 18% 0.99 (0.86-1.13); 17% CLRT, P-AC 1.07 (0.84-1.36); 16% 0.95 (0.75-1.20); 28%	RT, 0.77 (0.72-0.83)*; 78% 0.74 (0.70-0.79)*; 75% 0.54 (0.46-0.65)*; 84%† RT 0.85 (0.76-0.95)*; 61% 0.84 (0.76-0.93)*; 55% 0.81 (0.59-1.11); 42% IC _{er} -CLRT 0.90 (0.72-1.13); 46% 0.83 (0.66-1.03); 55% 0.58 (0.31-1.06); 73% MART 0.94 (0.87-1.01); 37% 0.89 (0.83-0.96)*; 40% 0.77 (0.62-0.97)*; 48% LRT-AC 1.03 (0.90-1.17); 18% 0.99 (0.86-1.13); 17% 0.77 (0.53-1.13); 48% CLRT _{up} -AC 1.07 (0.84-1.36); 16% 0.95 (0.75-1.20); 28% 0.77 (0.36-1.65); 47%	RT, 0-77 (0-72-0-83)*; 78% 0-74 (0-70-0-79)*; 75% 0-54 (0-46-0-65)*; 84%† 1-36 (0-61-2-99); 23 (0-70-0-95)*; 61% 0-84 (0-76-0-93)*; 55% 0-81 (0-59-1-11); 42% 0-32 (0-08-1-27); 71 (0-10-20-56); 29% (0-70-1-13); 46% 0-83 (0-66-1-03); 55% 0-58 (0-31-1-06); 73% 1-47 (0-10-20-56); 29% (0-70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

ACRT=accelerated radiotherapy with concomitant chemotherapy. CLRT_=elocoregional therapy with concomitant chemoradiotherapy without platinum-based chemotherapy. CLRT_=followed by adjuvant chemotherapy. CLRT,=locoregional therapy with concomitant chemoradiotherapy with platinum-based chemotherapy. HFCRT=hyperfractionated radiotherapy with concomitant chemotherapy. HFRT=hyperfractionated radiotherapy. IC-CLRT=induction chemotherapy followed by locoregional therapy with concomitant chemoradiotherapy. IC-LRT=induction therapy followed by locoregional therapy. LRT-AC-locoregional therapy followed by adjuvant chemotherapy. MART-moderately accelerated radiotherapy. NA-not available. Other-other type of induction chemotherapy. PF-cisplatin or carboplatin plus fluorouracil. TaxPF=taxane with cisplatin plus fluorouracil. VART=very accelerated radiotherapy. *Significant. †The three modalities of treatment with the highest P score. ‡No comparison was possible as the trial with this modality of treatment did not have information for event-free survival, locoregional control, and distant control.

1.00 (0.77-1.30); 17%

1.05 (0.94-1.17); 6%

cnemotherapyT

1.04 (0.93-1.16); 15%

IC.,.LRT

2.00 (0.49-8.09); 16%

Toxicity in CTRT

- Although CRT improves LRC and OS, and allows for organ preservation, toxicities are increased compared with RT alone.
- The most common acute grade 3/4 complications include:
- Leukopenia
- Anaemia
- Mucositis
- Dysphagia
- Swallowing dysfunction
- Acute CRT toxicities are related to the specific CRT regimen.

Toxicity to Multimodality Treatment

Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: a systematic literature review

Treatment	n	Mucositis incidence (% of patients)	Grade 3-4 mucositis (% of patients)
Total ^b	6181	80	39
RT-C	2875	97	34
RT-AF	1096	100	57
RT + CT ^c	1505	89	43
CT only	318	22	0

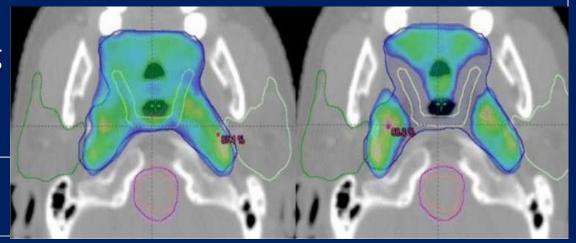
Oral Pain - 69%

Opioid Use -53%

Overall Incidence of - Hospitalization: 16%

Feeding Tube Insertion: 19%

Mean Wt. Loss: 6-12% of BW (34% lost wt)


Dysphagia: 56%

Late effect of Organ Preservation Protocols

- Andrew Beriman Conde 2 Americal Cilemenia
- All data: Pre-IMRT
- With the advent of better techniques, possible to reduce morbidity
 - DARS optimised
 - Parotid gland sparing
 - Adaptive RT
 - Image-guidanace

Wendt (n=270)

RT+CH

Incidence of Morbidity: Pre & Post IMRT

Toxicity		2D/3D-CRT	IMRT		
Xerostomia	Acute	54 – 89	24 -	59	
	Late	46 - 77	8 –	38	
Mucositis	Grade 1	3 - 7	OM non-sparing	OM-sparing	
			0	7 5	
	Grade 2	78.5 - 87	54.2	25	
	Grade 3-4	7 – 28.7	45.8	0	
Dysphagia > Grade 2	Acute	35 - 45	18 -	21	
	Late	60 - 63	6 -	38	
Fibrosis		11.3 - 60	2.3 - 15		
Trismus		13.9 - 25.4	3.3 - 5		
ONJ		2 - 22	0 -	6	
Hearing Loss		39 - 84.5	25.8	- 36	

12/7

Various Treatment modalities in Locally Advanced Carcinoma Larynx and Hypopharynx

- 1.Total laryngectomy +/- PORT
- 2. Organ Preservation startegies:
- Conservative Surgery
- Induction chemotherapy (ICT) followed by RT
- Concurrent chemo-RT
- ✓ ICT followed by CTRT
- Role of Targeted therapies
- Altered fractionation

Factors deciding choice of treatment

Patient factors

- Age
- Performance Status
- Comorbidity
- Previous Rx
- Reliability for F/U
- Pt.'s choice
- Pt.'s occupation
- Second Primary

Disease Factors

- Stage
- Site
- Volume
- Cord Mobility

Treatment factors

- Physician's Expertise
- Cost and Feasibility
- Treatment morbidity

When not to go ahead with it...

Table 4

Hazard ratio of death with locoregional treatment plus chemotherapy versus locoregional treatment alone by patient characteristics for each tumour site.

Overall survival		Oral cavity	4(Oropharynx		Larynx		Hypopharynx	
		HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value
Age ≤50 51–6	≤50	0.87 [0.75; 1.01]	0.03" (0.16)	0.86 [0.76; 0.98]	0.14 (0.14)	0.76 [0.58; 0.98]	0.54 (0.39)	0.76 [0.61; 0.95]	0.18 (0.06)
	51-60	0.76 [0.67; 0.87]		0.83 [0.75; 0.93]		0.89 [0.76; 1.04]		0.86 [0.73; 1.01]	
	61+	0.99 [0.86; 1.13]		0.97 [0.87; 1.08]		0.89 [0.77; 1.02]		0.98 [0.84; 1.14]	
	Male	0.91 [0.84; 0.99]	0.04**	0.89 [0.83; 0.96]	0.50	0.86 [0.78; 0.95]	0.78	0.86 [0.78; 0.95]	0.29
	Female	0.73 [0.61; 0.88]		0.83 [0.69; 1.00]		0.90 [0.66; 1.23]		1.04 [0.74; 1.46]	
Performance status 0 0.92 [0.	0.92 [0.79; 1.07]	0.60	0.73 [0.64; 0.82]	0.004	0.87 [0.74: 1.01]	0.64	0.84 [0.70; 1.00]	0.63	
	1+	0.87 [0.77; 0.98]		0.91 [0.83; 0.99]		0.82 [0.70; 0.97]		0.79 [0.68; 0.92]	
Stage	1, 11	0.90 [0.66; 1.24]	0.60 (0.60)	0.75 [0.56; 1.00]	0.02**** (0.20)	0.89 [0.63; 1.24]	0.98 (0.93)	1.01 [0.60; 1.70]	0.52 (0.26)
	Ш	0.80 [0.68; 0.93]		1.01 [0.88; 1.14]		0.85 [0.72; 1.01]		0.94 [0.77; 1.13]	
	IV	0.87 [0.79; 0.96]		0.83 [0.77; 0.90]		0.86 [0.76; 0.97]		0.84 [0.75; 0.94]	

- Gross cartilage invasion/ erosion/ lysis
- Dysfunctional larynx
- Patients who prefer avoiding RT
- Poor candidates for CT
- •Severe airway compromise requiring a tracheostomy or enteric feeding, are poor candidates for LP

Options: CTRT or ICT f/b CCRT??

Considerations

- Volume, Site: Larynx vs Hypopharynx
- Functional status: Fixed cord, no aspiration
- Nodal stage → higher risk for distant mets
- Either CTRT or ICT f/b CTRT

ASCO Clinical Practice Guideline Update: Use of Larynx-Preservation Strategies in the Treatment of Laryngeal Cancer

Gregory T. Wolf, MD

Arlene Forastiere et al. JCO 2018

Clinical Question 2

What are the larynx-preservation treatment options for advancedstage (T3, T4) primary site disease that do not compromise survival? What are the considerations in selecting among them?

Recommendation 2.1—Reworded: Organ-preservation surgery, combined chemotherapy and radiotherapy, and radiotherapy alone, all with further surgery reserved for salvage, offer the potential for larynx preservation without compromising overall survival. Anticipated success rates for larynx preservation, associated toxicities, and suitability for a given patient will vary among these approaches. Selection of a treatment option will depend on patient factors, including age, comorbidities, preferences, socioeconomic factors, local expertise, and the availability of appropriate support and rehabilitation services.

ASCO recommendations cont.....

• Recommendation 2.2—New: For selected patients with extensive T3 or large T4a lesions and/or poor pretreatment laryngeal function, better survival rates and quality of life may be achieved with total laryngectomy than with organ-preservation approaches and may be the preferred approach. Recommendation 2.4—Updated: A minority of patients with T3, T4 primary site disease will be suitable for specialized organ-preservation surgical procedures, such as a supracricoid partial laryngectomy. The addition of postoperative radiotherapy will compromise functional outcomes. Induction chemotherapy before organ-preservation surgery is not recommended outside a clinical trial.

Recommendation 2.5—*Updated*: Concurrent chemoradiotherapy offers a significantly higher chance of larvnx preservation than radiotherapy alone or induction chemotherapy followed by radiotherapy, albeit at the cost of higher acute in-field toxicities and without improvement in overall survival. The best available evidence supports the use of cisplatin as the drug of choice in this setting.

Recommendation 2.6—*Updated*: There is insufficient evidence to indicate that survival or larynx-preservation outcomes are improved by the addition of induction chemotherapy before concurrent treatment or the use of concurrent treatment with altered fractionation radiotherapy in this setting.

Conclusion

- Complete staging work-up with optimal imaging and functional evaluation: integration of functional imaging, volumetry
- There is no one standard larynx preservation treatment accepted worldwide.
- CTRT to be preferred with IMRT for optimal DARS sparing and careful assessment of DARS dysfunction
- Role of NACT Bulky disease, Higher chances of distant mets, Gross exolaryngeal spread without cartilage destruction
- Bio RT may be preferred in case poor tolerability to chemoRT is expected.
- Option of altered fractionation
- Built-in appropriate follow-up (rehabilitation, imaging) and salvage strategy
- Case selection is the cornerstone to successful outcome

Thank You

Acknowledgements: Shwetabh Sinha Anuj Kumar Asesh Samanta