LGG-the spectrum

Survival Astrocytomas	Oligo-Astros	Oligodendrogliomas	
Median (yr) 4.7	7.1	9.8	
2-yr (%) 80	89	93	
5-yr (%) 46	63	73	
10-yr (%) 17	33	49	
15-yr (%) 17	17	49	

Traditionally RT is offered What is the appropriate dose?

EORTC 22844 379 randomised April'85-Sept'91 Med FU 74 mo

NCCT/RTOG/ECOG 203 randomised May'86-Dec'94 Med FU 6.4 yrs

54 Gy in 30fractions is a good compromise

What is the appropriate volume of treatment?

 With conformal RT, the T2-signal abnormality was treated with a 1-3 cm 3-D expansion for initial 45-50 4Gy

followed by 0-2 cm margin to a total dose of 54-59 4Gy

 10/11 patients of Grade II glioma with recurrence were located within the boost volume.

Timing of radiotherapy?

Arguments for immediate RT:

- LGG respond to RT
- Tumors often display aggressive behavior and transform
- Patients with high risk profile will benefit
- Modern focal RT is far less toxic than older high risk regimens
- RT may be more effective earlier with lower tumor burden

EORTC 22845
311 randomised
March'86-Sept'97
RT dose=54Gy
Median FU=60mo

Observation vs. Sx as initial strategy in LGG?

Pros:

- If symptoms uncontrolled medically, then benefits of Sx on seizures / raised ICT are fairly dramatic
- Imaging misleading upto 40%
- Early Sx delays reappearance of symptoms and tm growth
- Survival advantage to gross resection in retrospective literature

Cons:

Possibility of complications in a minimally symptomatic person

Who can be observed? The prognostic factors

Tumor dependent

- Histology: Oligo vs. Oligoastro vs. fibrillary astro
- Molecular markers: p53, MIB-1
- Contrast enhancement
- > Size > 5 cm
- > Tm crossing midline

Patient dependent

- > Age ≤ 40
- E PS
- Neurologic function
- Seizures as initial symptoms
- Corticosteroid dependency

Treatment dependent

- Radical Sx
- RT at diagnosis
- Chemo at diagnosis

Tumor-dependent factors

- Presence of p53 mutation and high proliferation index (MIB-1 >5%) associated with slightly more rapid transformation to HGG and worse prognosis
- ➤ Contrast uptake (=disrupted BBB or increased vascularity) freq associated with transformation to higher grade (and worse survival in age >40 and good PS). Methionine uptake on PET is of negative prognostic value
- Large Tm, crossing midline, rarely resectable, rapidly symptomatic, shorter survival

Patient-dependent factors

- Age: under 40 favourable
- PS: performance status and neurologic function depend upon tumor size and location. KPS <70 consistently unfavourable</p>
- Seizures : significant on univariate , not on MV

Treatment - dependent factors

Radical surgery: Median TTP correlated with post-operative volume (<50% resection = 24me) vs. (50-89% resection = 36me)</p>

Radiotherapy

- For dose levels, 2 RCTs: 45Gy = 59.4Gy and 50.4Gy = 64.8Gy
- Immediate vs. deferred RT, 1RCT: Equivalence of outcome

Low grade Gliomas - Imaging

Low grade Gliomas - Imaging

Biological Imaging: Perfusion/Angiogenesis

Relative Cerebral Blood volume (rCBV) values : mL/100 gms of brain tissue

Prognostic score: LGG

322 pts from EORTC 22844

Prognostic factor	HR	p value
Age at randomisation		
< 40 years	1	0.007
≥40 years	1.26	
Largest diameter of tumor		1
< 6 cm	1	0.000
≥6 cm	1.39	4-
Tumor crossing midline		
No	1	0.000
Yes	1.37	
Histology type		
Oligo / mixed	1	0.005
Astrocytoma	1.30	
Neurologic deficit		
Absent	1	0.001
Present	1.35	

Low risk 0-2 7.72 yr High risk 3-5 3.20 yr

Role of chemotherapy

- Temozolamide in progressive LGG
- n= 41 (16 = 35% astrocytomas)
- newly diagnosed or previously Rx (52% resected, 22% prior chemo, 15% prior RT)
- 200mg/m²/day x 5days q28 days x 12 cs
- 70% ENHANCING on CT / MR
- MR every 8 weeks, Macdonald's criteria

Overall Median PFS 22 months, 12 mo PFS 73% for astrocytoma

Overall CR = 24% (31% for astrocytoma)

Overall PR = 37% (38% for astrocytoma)

Overall CR + PR = 61% (69% for astrocytoma)

Role of chemotherapy

- Temozolamide in stable or progressive LGG
- n= 30 (19 = 63% astrocytomas/mixed)
- 60% resected, no prior chemo or RT
- 200mg/m²/day x 5days q28 days x 12 cs
- NO ENHANCEMENT on CT / MR
- MR every 3 months, Macdonald's criteria.


```
Overall Median PFS not reached, 3 yr PFS = 66%
```

Overall CR = Nil

Overall PR = 10% (5% for astrocytoma/mixed)

Overall MR = 48% (58% for astrocytoma/mixed)

Suggested management

- For favourable prognosis patients, attentive watchful waiting is justified.
- Decision to use surgery with or without RT should be based on an appraisal of risk of relapse, and in patients with progression
- Conformation in 3-D is highly desirable to reduce the potential for late morbidity in adult LGG
- Molecular markers will help
- Chemo (TMZ) being tested in large EORTC/RTOG trials