

Rationale for Craniospinal irradiation(CSI) in medulloblastoma

CSF dissemination is known in 16-46% of cases

- Posterior fossa, spinal cord, ventricular walls & supratentorial region including the cribriform plate form the main sites of relapse.
- Being radiosensitive, RT is curative in up to 70% of standard risk patients.

Target volume for CSI

- Whole brain with its meninges
- Spinal cord down to the caudal end of the thecal sac(usually S2 but should be verified by saggital MRI)
- Primary tumour site/posterior fossa(for boost)

Challenges in planning CSI

- Immobilization & positioning of a large target area
- Large & irregular shape of the clinical target
 volume (CTV)
- Multiplicity of fields
- Inhomogeneity at the junctions between the brain and spinal fields
- Large number of critical normal structures having direct bearing on the late effects in these pediatric long term survivors.

Planning steps

- Positioning
- Immobilization
- Simulation
- Verification
- Treatment
- Junction shift

Positioning

PRONE:

- It provides direct visualization of the field junctions on the patient.
- Good alignment of the spine.

SUPINE

- Comfortable.
- Useful in anesthesia(in < 7yr age gp)</p>

Immobilization

- Prone position of patient
- Arms by the side on a CSI board CSI board
- Lucite base plate with a sliding semicircular Lucite structure for head-rest & chin-rest.
- Slots from A to E to allow various degrees of extension of neck

Immobilization

- Thermocol wedge for supporting the chest wall
- Alignment of the thoracic & lumbar spine parallel to the couch (to confirm under fluoroscopy)
- Thermoplastic mold for Immobilization of the head,cervical spine & shoulders.

Radiotherapy Planning

Phase I

- Two lateral cranial fields
- 1 or 2 spinal fields

Phase II: Posterior fossa boost

- Two lateral cranial fields
- Conformal technique in low risk cases.

Critical issues in CSI fields

Concern 1

Divergence of the upper border of the spinal field in case of single spinal field(and interdivergence of spinal fields in case of 2 spinal fields)

Concern 2

Divergence of both cranial fields

- Spinal field simulated first (get to know the divergence of the spinal field)
- SSD technique
- 2 spinal fields if the length is > 36 cm
- Upper border at low neck
- Lower border at termination of thecal sac or S2 whichever is lower
- In case of 2 spinal fields, junction at L2/L3

Spinal field
(Upper border)

Craniospinal junction

- Possible causes of overdose at the neck
- Narrow neck separation than cranium
- Couch rotation towards gantry decreased treatment distance(and > dose).
- Horns at the lateral aspect of the beam secondary to overflattening of the LA beam.
 Halperin IJROBP 1996

Termination of thecal sac

- Traditional recommendation for lower border of spinal field is inferior edge of S2 (myelogram & autopsy studies).
- 8.7% patients have termination below S2-S3 interspace.
- MRI accurately determines the level of termination of the thecal sac & the extent of neuraxial disease if present.

IJROBP, 1998, vol 41

Gap or no gap-spinal fields

- Proponents of no gap Concerned over possible lower dose to part of target volume. (Tinkler, 1995).
- Proponents of gap Overdose at the junction & cervical spine & may result in disabling late toxicity.

Fixed or calculated gap spinal fields

- Use of fixed gap ranging from < 5 mm to 10mm between fields OR
- Customised gap for each patient depending on the field length & depth of prescription, may be more appropriate
- Spinal fields are simulated after gap calculation.
- Width vertebral body + 1 cm to include the intervertebral foramina, usually 5 to 7 cm.

Gap calculation-formula

Gap calculation-formula

Gap calculation-formula

Extended SSD technique

- Advantage Single spinal field and circumventing the issue of junction between two spinal fields
- Disadvantage
 Higher percentage depth dose and greater
 penumbra results in higher mean doses to
 all anterior normal structures, (mandible,
 esophagus, liver, lungs, heart, gonads and
 thyroid gland)

Simulation-cranial field

- Whole brain field is simulated & lower border is matched with the superior border of spinal field.
- AP width & superior border include the entire skull with 2 cm clearance.
- Techniques for matching craniospinal fields.
 - Collimator/couch rotation
 - Half beam block
 - Asymmetric jaws
 - Penumbra generators
 - Wedge
 - Tissue compensator

Problem 1: Divergence of cranial field Spinal field

Solution A: Rotate the couch

Solution B: Asymmetric block

Problem 2 Divergence of spinal field

Solution A: Rotate the cranial field collimator.

Solution B: Use asymmetric spinal block

Simulation-cranial field

- In practice 5 mm gap left in the cranial and spinal fields.
- Cranial field Collimator angle = tan-1 { ½ L₁/SSD} L₁ is spinal field length.
- Couch angle = tan-1 { ½ L₂/SAD}
 L₂ is cranial field length.
- Use of asymmetric collimator jaws precludes the need of couch rotation.

Shielding

More important is what not to shield!

DO NOT SHIELD

- Frontal (cribriform plate)
- Temporal region

SFOP (French society Paediatric Oncology) guidelines

Treatment & verification

- Port films after placing radio-opaque markers on the inferior border of cranial field can be used to verify craniospinal field matching.
- Electronic portal imaging has also played important role in verification & correction of set up errors.

Moving Junction in CSI

5mm overlap at 4mv photons 30 to 40% overdose(14Gy for 36Gy prescribed dose) which may exceed cord tolerance

(Hopulka, 1993, IJROBP).

- Systematic error during radiotherapy delivery could further lead to an overlap or gap.
- Feathering after every 5 to 7 fraction smoothesout any overdose or underdose over a longer segment of cord

Moving junction/feathering

Advantage:

Feathering after every 5 to 7 fraction smoothes out any overdose or underdose over a longer segment of cord.

Junction shift in CSI

Junction shift in CSI

Junction shift in CSI

Junction shift

- Usually shifted by 1 to 2 cm at each shift
- Done every few fractions(every 7# at our center).
- Either in cranially or caudal direction.
- Cranial inferior collimator is closed & spinal superior collimator is advanced by the same distance superiorly (if junction to be shifted cranially).
- Similarly, lower border of superior spinal field & superior border of inferior spinal field are also shifted superiorly, maintaining the calculated gap between them.

Posterior fossa boost

Borders

- Anterior: Posterior clinoid process.
- Posterior: Internal occipital protuberance.
- Inferior: C2-C3 interspace.
- Superior: Midpoint of foramen magnum & vertex or 1 cm above the tentorium (as seen on MRI).

Field arrangement

- Two lateral opposing fields.
- 3DCRT boost to the preop tumor bed with appropriate margins is being studied.

SFOP guidelines

Dose prescription

Dose	Medulloblastoma
CSI	35Gy/21#
PF boost	19.8Gy/11#

Dose prescibed at mid separation for the cranial fields

Determined by the MRI for the spinal fields

Junction shift every 7 fractions

Technical beam parameters

- Photons: 4 to 6mv produce good dose homogeneity
- Cranial field prescribed at midplane SSD
- Spinal field 5 to 6cm along central axis depending on depth of spinal cord at SSD (posterior vertebral body seen on Lateral X rays / CT scan / MRI).

CT simulation

- Ability to virtually simulate, thereby minimizing the time a patient must remain immobilized.
- Better definition of critical organs (spinal cord) and target volume (cribriform plate)
- Graphical overlays of anatomic CT data onto digitally reconstructed radiographs (DRRs) - improves field placement, shielding accuracy & direct calculation of gap between the fields.

Steps in CT simulation

- Patient positioned using all ancillary devices and the spinal columns aligned with the sagittal external laser.
- Three-point reference marks drawn on the mask in a transverse plane at the center of the head with the aid of the external lasers.
- Two or three reference marks were placed on the posterior skin surface along the spinal column
- Spiral CT images of 3-5 mm thickness are acquired.
- Following image acquisition, all spinal reference marks are tattooed and the patient permitted to leave.
- A total of 130–170 images are reconstructed depending on the patient's height.

Supine CSI planning CT based

Individualized CT planning

- Method analogous to conventional simulation but with use of asymmetric collimator jaws for matching beam divergence.
- Field junctions can be visually verified.
- The distance between the two isocenters (three if two spine fields are required) can be calculated once the beams have been set.
- This distance can then be used as the digital longitudinal table distance shift.

CT simulation – fixed field geometry

Fig. 1. Schematic diagram of the CSI technique as applied to a supine patient.

Saggital MPR of patient in supine CSI

Supine CSI by conventional simulation-

The TMH technique

Supine CSI planning - conventional

Positioning:

- Supine on NNR with arms by the side of body.
- Check spinal column alignment on fluoroscopy.
- Neck in near neutral position but slightly extended.

Immobilisation:

- Thermoplastic mold for immobilization of face & neck.
- Close fit at the nasion.
- Any constraint for the jaw is removed to facilitate anesthetic maneuvers.

Step 1: Two lead markers by the side of the neck at the same laser level

Step 2: Gantry taken through table and the upper border of spinal field matched with the markers.

Step 3: Two additional markers placed in the line of upper border

Anterior view of the placement of the markers

Step 4: Collimation of the cranial field adjusted according to the line joining the two markers on one side of the neck(which is the divergence of the spinal field)

