Planning aspect of Precision Radiotherapy

Dayananda S Shamurailatpam

Dept. of Medical Physics Tata Memorial Hospital, Mumbai

Shamu_d@yahoo.com

Conventional Radiotherapy planning

Simulator

- Based primarily on 2D planar radiographs
- Usually done with the aid of a Simulator
- Planned Treatment Portals by collimating rectangular fields that circumscribed the presumed tumor location on the basis of bony landmarks
- 2 to 3 beams are arrange in a standard geometry
- use Standard or Customize blocks for irregular fields & shielding of critical organs

Shortcoming of conventional planning

- Lack of 3D appreciations of tumor volume and its location w.r.t. sensitive organs
- 2D beam planning of a 3D tumor
- Dose computation perform on a single transverse plane
- Dose computation does not take in to account of scatter contribution from adjacent body tissue

Three Dimensional Conformal Radiotherapy (3DCRT)

Tightly Conformed image defined 3D shape of Tumor by therapeutic dose volume and conformally avoid surrounding normal tissue

- In this Fig: Ideally White envelop (prescription dose) should paint on to the Red Volume (Tumor).
- Gap between dose & tumor volume mean extra normal tissue irradiated with prescription dose
- Red seen outside white mean fraction of tumor not receiving the prescription dose

Beam's eye view (BEV) planning - 1978

provides the user with accurate reproduction of anatomic features from the viewpoint of treatment source.

Beam Planning

Done using Beam's Eye View (BEV) in TPS

Thumbs rule:

- a) beam geometry should separate PTV and OAR
- b) Less beam entry length
- c) wide hinge angle
- d) beam geometry should preferably take the shape of PTV

G B M

60%

80%

9046

95%

108 %

Dose dist without Wedge

Dose dist with Wedge

Penumbra

6MV X-ray from LA

C0-60 from Telegama

Plan1: Ant+Lat Vs Post+Lat

Ant + Lt Lat Ant TSD=90.4cm

60%

80%

95%

Post + Lt Lat Ant TSD=92.7

Plan1: Ant+Lat Vs Post+Lat

Ant + Lt Lat

Post + Lt Lat

Plan2: 2F_Post+Lat Vs 3F_ant+post+Itlat

Post + Lt Lat

Ant + Post + Lt Lat

Plan3: 3F_ 45° Wedge Vs 30° Wedge

Wedge angle = 90-Hinge angle/2

Plan3: 3F_ 30° Wedge

Dose not conformed to PTV

Plan4: 3F_ Conformal beam

Conformal block

MLC

scalloping effect

MLC shape field

rectangular field

Case: Meduloblastome (Post fossa)

Parallel oppose Vs 3F_NCP

Co-planer T=0, G=90 T=0, G=270

Non Co-planer T=90, G=150-160 T=350, G=100 T=10, G=260

ICHID NU YOU

Case: Post fossa

Parallel oppose Vs 3F_NCP

NCP

NCP

conventional

Conventional

NCP

30% 20% 10%

Lt. eye

Rt.Eye

Supine treatment for CSI

T=0, G=270, C=9

T=0, G=90, C=351

T=0, G=180, C=0

95%-108%

60%-108%

S R T A R C

Static conformal beam using mMLC

Static conformal beam

TMH Gold Standard

T=60, G=60 T=60, G=120 T=300, G=300 T=300, G=240 T=10, G=260 T=350, G=100

Static conformal beam

- -For large irregular target
 -multiple Isocenters are necessary
 - -Large dose inhomogeneity

- All the disadvantages in cone based system are overcome with micro MLC
- Single Isocenter with uniform dose distribution