HEAVY PARTICLE THERAPY

DR. G.V. GIRI
KIDWAI MEMORIAL INSTITUTE OF
ONCOLOGY

HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS

- BETTER DIFFERNTIAL EFFECT ON TUMOR CELLS Vs NORMAL CELLS
- SUPERIOR LOCALIZATION CAPABILITY,
 THEREFORE A HIGER DOSE TO THE TUMOR

HADRON THERAPY

- NEUTRONS
- NEGETIVE PIONS
- PROTONS
- HEAVY PARTICLES He 2, C 6, O 8,
 Ne 10, Ar. 18

HADRONS

> MASS, RELATIVELY DIFFICULT TO PRODUCE AND CONTROL, LIMITED AVAILABILITY

LET –PARMETER TO DESCRIBE ENERGY LOSS OF THE RADIATION

ICRO 2012, BHATINDA

CONVENTIONAL QUALITY FACTORS (RBE) TO CALCULATE EQUIVALENT DOSES

RADIATION	ENERGY	Q FACTORRBE
X-RAYS, GAMMA, ELECTRON, MUONS		1
NEUTRONS	< 10 KeV	5
	10 KeV – 100 KeV	10
	100 KeV 2 MeV	20
	2 MeV –20 MeV	10
	> 20 MeV	5
PROTONS	> 2 MeV	2
ALPHA PARTICLES, HEAVY NUCLEI, NUCLEAR FISSION PRODUCTS		20

NEUTRON -- BARYON

BOTH NEUTRONS AND GAMMA RAYS --- UNCHARGED

1932 CHADWICK DEDUCED ITS
EXISTENCE BY OBSERVING
RECOIL PROTONS THAT WERE
PRODUCED BY FAST NEUTRONS
INTERACTING WITH HYDROGEN
NUCLEI IN PARAFFIN

- RECOIL PROTONS & RECOIL IONS -- DUE TO NEUTRON COLLISIONS ARE THE PRIMARY ENERGY TRANSFER MECHANISMS TO THE TISSUE – ELASTIC SCATTERING.
- BIOLOGICAL EFFECT DUE TO SECONDARY ELECTRONS PRODUCED
- ENERGY DEPOSITED 30 80 keV/ MICRON COMPARED TO 1 KeV/ MICRON WITH COMPTON ELECTRONS

NEUTRON GENERATORS

• 14.1 MeV Neutrons (DT)

For a 14 MeV neutron generator (deuterium-tritium): APPROX 250 KeV

$$_{1}D^{2} + _{1}T^{3} -->_{2}He^{4} (3.5 MeV) + _{0}n^{1} (14.1 MeV)$$

- D→D NEUTRON GENERATOR, 2.5 MeV
- T→ T NEUTRON GENERATOR, 0 9 MeV

D – T GENERATOR

NEUTRON TUBE SCHEMATIC

ICRO 2012, BHATINDA

D-T GENERATOR

D – T GENERATORS

- 10 − 15 cgy/MIN
- TRITIUM CONSUMPTION
- HEAT DISSIPATION
- USUAL SSD 75 CM→ PRECLUDES ADJUSTABLE COLLIMATORS
- ISOTROPIC EMISSION OF NEUTRONS→ EXTN.
 SHEILDING
- PENETRATION </= CO 60. D50 = 9.5CM Vs 11.5

NEUTRON GENERATORS

- CYCLOTRONS (PARTICLE ACCELARATORS)
- → 16 MeV DEUTRONS → Be = 6MeV NEUTRON POOR DEPTH DOSE & FIXED BEAM GEOMETRY
- LARGER CYCLOTORNS → 22 50 MeV
 DEUTRONS OR 67 MeV PROTONS → Be
- ADEQUATE DOSE RATES AND GOOD DEPTH DOSES
- FIXED HORIZONTAL BEAMS & IN PHYSICS INSTILLATIONS → INTEREST WANED BY MID 80'S

P+ → Be NEUTRONS

DD % CURVES COMPARISON

CLINICAL APPLICATIONS

- SALIVARY GLAND TUMORS (EXECPT SCC) →
 REDUCED VARIATION IN SENSITIVITY THROUGH
 OUT THE CELL CYCLE WITH SLOWLY CYCLING
 CELLS
- ADENOID CYSTIC CA. → HIGHEST RBE (8.0) WITH # NEUTRON THERAPY. RBE > THAN FOR NORMAL TISSUE
- TREATING ADENOID CYSTIC CA. WITH 20 NEUTRON Gy = 160 Gy (PHOTONS) & =66 Gy IN EFFECT TO NORMAL TISSUE.

THERAPEUTIC GAIN = 2.5

RESULTS

- NCI/ MRC TRIAL ---- LOW LET PHOTONS + ELECTRONS Vs NEUTRONS
- ADVANCED SALIVARY GLAND Tm., > 7CM, UNRESECTABLE
- 10 YEAR LOCOREGIONAL TUMOR CONTROL
 56 % WITH NEUTRONS Vs 17 % LOW LET
 RADIATION (P = .009). 10 Yr SURVIVAL NO
 DIFFERENCE DUE TO DEVELOPMENT OF DISTANT
 METASTASIS IN BOTH GROUPS

- SCCHN CA.---- RESULTS EQIVOCAL, NO OVERALL DIFFERENCES OBSERVED IN EITHER LOCOREGIONAL TUMOR CONTROL OR SURVIVAL.
- CERVICAL ADENOPATHY PRESENT —

	LOCAL (CONROL	LOCAL CONTROL
RANDOMIZED STUDY	NEUTR	ONS	PHOTONS / ELECTRONS
MRC	22 / 38	(58 %)	20 / 41 (49 %)
RTOG	49 / 109	(45 %)	23 / 87 (26 %)
NCI / MRC	35/57	(61%)	33 / 67 (49 %)

- NSCLC COMBINATIONS OF NEUTRONS + PHOTONS → INCREASED TUMOR STERILIZATION AT AUTOPSY.
- UNIV. OF WASHINGTON 70 % LCR
- M.D.A. C.C. 91 % LCR WITH PANCOAST
 TM. → IMPROVEMENT OF SURVIVAL RATES
- NO SURVIVAL BENEFIT WITH IN LOCALLY ADVANCED, INOPERABLE NSCLC.
- MAY SHOW BENEFIT ONLY IN THE GROUP OF PATIENTS WITH GOOD PROGNOSTIC INDICATORS AND SUPERIOR SULCUS TUMORS

- PROSTATE CANCER STASTICALLY SIGNIFICANT ADVANTAGES IN TERMS OF LRC, OS & DFS
- RTOG 178 PTS. 5 YEAR SURVIVAL 89 % FOR NEUTRONS & 68 % FOR PHOTONS (P < 0.01)
 PSA ELEVATED AT 5 YRS IN 17 % FOR PTS TREATED WITH NEUTRONS Vs 45 % FOR THOSE TREATED WITH PHOTONS

• SARCOMAS –

	LOCAL CONTROL	LOCAL CONTROL
SARCOMA	NEUTRONS	PHOTONS / ELECTRONS
SOFT TISSUE SARCOMA	158/ 297 (53 %)	49 / 128 (38 %)
OSTEOGENIC SARCOMA	40 / 73 (55 %)	15 / 73 (21 %)
CHONDROSARCOMA	25/ 51 (49 %)	10/ 30 (33 %)

Proton Therapy

- 55,000 patients have been treated with proton therapy World Wide
- In the United State there are five facilities offering this treatment
- Approximately 20,000 patients have been treated between two of this facilities
 - The Harvard cyclotron laboratory at Massachusetts General Hospital
 - The Proton Treatment Center at Loma Linda University Medical Center (LLUMC)
- The other three new centers providing this service in the US are
 - M.D. Anderson Proton Therapy Center in Houston
 - University of Florida's Shands Medical Center in Jacksonville
 - University of Pennsylvania's proton facility in Philadelphia

PROTON BEAM GENERATORS

ION SOURCE \rightarrow PROTONS \rightarrow

VACUM LINEAR ACCELARATOR
TO, 7 MeV IN MICRO SECONDS
→

ENTER THE SYCHOTRON
WHERE ACCELARATED TO
ENERGIES 70 MILLION − 250
MeV → BEAM TRANSPORT

PROTON BEAM MACHINES

235MeV proton cyclotron used for proton cancer therapy at Boshan, China

Hydrogen plasma ion source inside of the accelerator

Protons vs Photons

- Irradiate smaller volume of normal tissues
- Photon beam decreases exponentially with depth in the irradiated tissues
- Protons have a finite range
- Protons deposit most of their radiation energy in what is known as Braggs peak

Bragg's Peak

- Described by William Bragg over 100 years ago
- Depth is dependent on the energy of the proton beam
- This energy can be control very precisely

Proton Therapy

- Spread-out Bragg peaks (SOBP)
 - The dose peak may be 'spread out' to achieve a uniform dose
- Spot scanning method
 - Recently introduced
 - Small pencil beams of a certain energy deposit their peaks to obtain 'dose-sculpting' of the target

Dose Equivalent

- Relative biological effectiveness (RBE)
 - Ratio of the photon dose to the particle dose required to produce the same biological effect
- An RBE value of 1.1 is generally accepted for clinical use with proton beams
- Gray equivalents (GyE) or cobalt Gray equivalents (CGE) often used with protons
 - Gray multiplied by the relative biological effectiveness
 (RBE) factor specific for the beam used

Carbon ions

- The RBE of carbon ions has a estimated value of 3
- Carbon ion therapy attempts to capture the 'best of both worlds,'
 - Presence of the proton's Bragg peak
 - Advantage of their high RBE to increase the tumor control probability

IMPT

- Intensity modulated proton therapy (IMPT)
 - Radiation portals which adds more accuracy to target zone
 - Also, in contrast to the twodimensionality of IMRT, IMPT is able to modulate the Bragg peak allowing threedimensional optimization.

IMRT IMPT

 The dose to 90% of the cochlea was reduced from 101% with standard photons, to 33% with IMRT, and to 2% with protons

CLINICAL APPICATIONS OF PROTONS AND HEAVY IONS -UVEAL MELANOMA

EQIVALENT OF 70 GY / 5 # / 8-9 DAYS

PROTONS	IONS
96 %	97 %
89 %	83 %
80 %	76 %
	96 % 89 %

SARCOMAS ADJACENT TO CNS TISSUES

CHORDOMAS OR CHONDROSARCOMA

POST OP PHOTON RADIATION LRC = 35 – 40%

HAVARD CYCLOTRON – 68.5 PHOTON Gy EQIV. @ 1.8 PHOTON Gy

5 Yr LCR = 91 % FOR CHONDROSARCOMAS AND 65 % FOR

CHORDOMAS

PROSTATE CA.

- INTIAL LOMA LINDA EXPERIENCE 1255 PTS., 1991 OCT. DEC 1997.
- BIOCHEMICAL RELAPSE AND TOXICITY
- 30 CGE BOOST + 45 Gy PHOTONS 4 FIELD 3 D CONFORMAL TECHNIQUE
- DFS @ 10 Yrs 73 % AND 90 % WHEN INITIAL
 PSA <= 4.
- LONG TERM OUTCOMES COMPARABLE TO OTHER MODALITIES INTENDED FOR CURE

SUMMARY OF CLINICAL INDICATIONS FOR PARTICLE THERAPY

NEUTRONS

- SALIVARY GLAND , ADVANCED
- PROSTATE CANCER T2 − T4, N0 − 2, M0
- UNRESECTABLE SOFT TISSUE, BONE, CARTILAGE SARCOMAS
- SCCHN PRESENTING WITH LARGE NECK NODES

PROTONS

- UVEAL MELANOMAS
- CHORDOMAS OR CHONDROSARCOMA ADJACENT TO CNS TISSUE

THANK YOU