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Penetration of photon beams into patient

� A photon beam propagating through air or vacuum is 
governed by the inverse square law.

� A photon beam propagating through a phantom or patient 
is affected not only by the inverse square law but also by 
the attenuation and scattering of the photon beam inside 
the phantom or patient.

� The three effects make the dose deposition in a phantom 
or patient a complicated process and its determination a 
complex task. 
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Need for dosimetric functions

� We need to know dose distribution within target volume 
and in the surrounding tissues

� One cannot measure dose at all points

� Several dosimetric functions link the dose at any arbitrary 
point inside the patient to the known dose at the beam 
calibration (or reference) point in a phantom.
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Dosimetric functions are measured in reference 
conditions

� Dosimetric functions are usually measured with suitable 
radiation detectors in tissue equivalent phantoms.

� Dose or dose rate at the reference point is determined for, 
or in, water phantoms for a specific set of reference 
conditions, such as:

�Depth in phantom z

� Field size A

�Source-surface distance (SSD)

4



Central axis depth dose (CADD)

� Typical dose distribution for an 
external photon beam follows 
a known general pattern:

�Surface dose Ds

�Rapid buildup of dose 
beneath the surface - reaches 
a maximum value at a depth 
zmax - decreases almost 
exponentially - reaches a 
value Dex at the patient’s exit 
point.
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Surface dose

� Surface dose:

� For megavoltage x-ray beams the 
surface dose is generally much 
lower (skin sparing effect) than the 
maximum dose at zmax.

� For superficial and orthovoltage 
beams zmax = 0 and the surface 
dose equals the maximum dose.

� Typical values of surface dose:
� 100%for superficial and orthovoltage

� 30% for cobalt-60 gamma rays

� 15% for 6 MV x-ray beams

� 10% for18 MV x-ray beams
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Depth of dose maximum depends on….
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� Photon beam energy (main effect)
� Field size (secondary effect)

� For a given field size:

� zmax increases with photon 
beam energy.

� For 5x5 cm2 fields, the 
nominal values of zmax are:

Energy 100 kVp 350 kVp Co-60 4 MV 6 MV 10 MV 18 MV

zmax(cm) 0 0 0.5 1.0 1.5 2.5 3.5



Radiation treatment parameters

� The main parameters in external beam dose delivery with 
photon beams are:

�Depth of treatment z

� Fields size A

�Source-skin distance (SSD) in SSD setups

�Source-axis distance (SAD) in SAD setups

�Photon beam energy 

�Number of beams used in dose delivery to the patient

� Treatment time for orthovoltage and teletherapy machines

�Number of monitor units (MUs) for linacs

8



Radiation treatment parameters

� Point P is at zmax on central 
axis.

� Point Q is arbitrary point at 
depth z on the central axis.

� Field size A is defined on 
patient’s surface.

� AQ is the field size at point Q.

� SSD = source-skin distance.

� SCD = source-collimator 
distance 
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Radiation field size

� Radiation fields are divided into two categories:

geometric and dosimetric (physical).

�According to the ICRU, the geometric field size is defined as 
“the projection of the distal end of the machine collimator 
onto a plane perpendicular to the central axis of the radiation 
beam as seen from the front center of the source.”

� The dosimetric field size (also called the physical field size) 
is defined by the intercept of a given isodose surface 
(usually 50%) with a plane perpendicular to the central axis 
of the radiation beam at a defined distance from the source.
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Equivalent field size

� Equivalent square for rectangular field:
�An arbitrary rectangular field with sidesa and b will be 

approximately equal to a square field with side aeq when 
both fields have the same area/perimeter ratio (Day’s rule).
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Percentage depth dose

�Central axis dose distributions inside the patient are 
usually normalized to Dmax = 100% at the depth of 
dose maximum zmax and then referred to as 
percentage depth dose (PDD) distributions

�PDD is thus defined as follows:

� DQ and       are the dose and dose rate, respectively, at 
arbitrary point Q at depth z on the beam central axis.

� DP and       are the dose and dose rate, respectively, at 
reference point P at depth zmax on the beam central axis.
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Dose at any point is due to both primary & scatter

�The dose at point Q in the patient consists of two 
components:  primary component and scatter 
component.

�DQ = Dpri + Dsca

�As the depth increases, the relative
contribution of Dpri decreases and 
that of Dsca increases

�At low energies, this effect is 
predominant 
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Tissue-phantom ratio (TPR)

� For isocentric setups with megavoltage photon energies the 
concept of tissue-phantom ratio TPR was developed.

� Similarly to TAR the TPR depends upon z, AQ, and energy.

� TPR is defined as: 

�DQ is the dose at 

point Q at depth z

�DQref is the dose at depth zref.

� Tissue-maximum ratio TMR is a special TPR for zref = zmax.
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Off-axis beam profiles

� Combining a central axis 
dose distribution with off-
axis data results in a volume 
dose matrix. 

� 2-D and 3-D information on 
the dose distribution in the 
patient

� The off-axis ratio OAR is 
defined as the ratio of dose 
at an off-axis point to the 
dose on the central beam 
axis at the same depth in a 
phantom
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Off-axis or cross-beam beam profiles
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Field size

�Geometric or nominal 
field size is: 
� Indicated by the optical light 

field of the treatment 
machine.

�Usually defined as the 
separation between the 50% 
dose level points on the 
beam profile measured at 
the depth of dose maximum 
zmax (dosimetric field size)

17



Penumbra

�The total penumbra is referred to as the physical 
penumbra and consists of three components:

�Geometric penumbra
results from the finite 
source size.

�Scatter penumbra
results from in-patient 
photon scatter 
originating in 
the open field.

�Transmission penumbra
results from beam 
transmitted through 
the collimation device.  
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Flatness & Symmetry
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Isodose chart & isodose curves

� An isodose chart for a given single beam consists of a 
family of isodose curves usually drawn at regular 
increments of PDD.

� Two normalization conventions are in use:
� For SSD set-ups, all isodose values are normalized to 100% 

at point of dose maximum on the central beam axis.

� For SAD set-ups, the isodose values are normalized to 
100% at the isocentre
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Normalization at dose maximum

�For SSD set-ups, all isodose values 
are normalized to 100% at point P
on the central beam axis (point of 
dose maximum at depth zmax).
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Normalization at isocentre

�For SAD set-ups, the isodose 
values are normalized to 100% at 
the isocentre.
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Different type of normalization
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Different normalizations for a 
single 18 MV photon beam incident on a patient contour

Isodose curves for a fixed 
SSD beam normalized at 
depth of dose maximum

Isodose curves for an isocentric 
beam normalized at the isocenter



Isodose curves are affected by…

�Beam quality

�Source size

�Beam collimation

�Field size

�Source-skin distance

�Source-collimator distance
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Isodose curves for different energies

� Isodose distributions for various photon radiation beams: 
orthovoltage x rays, cobalt-60 gamma rays, 4 MV x rays, 10 
MV x rays
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‘Ears’ in an isodose chart: Have you ever noticed?
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‘Ears’ in an isodose chart: Have you ever noticed?

�Contaminant 
electrons contribute 
to dose outside the 
field at shallow 
depths. The 
magnitude and extent 
of the dose outside 
the geometric edge of 
a field at shallow 
depths increases
with beam energy
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Does your TPS model this phenomenon?

From: Dr. Palta, Univ of Florida



Corrections for contour irregularities

�Measured dose distributions apply to a flat radiation beam
incident on a flat homogeneous water phantom. 

�To relate such measurements to the actual dose distribution 
in a patient, corrections for irregular surface and tissue 
inhomogeneities have to be applied. 

�Three methods for contour correction are used: 

(1) the (manual) isodose shift method; 

(2) the effective attenuation coefficient method; 

(3) the TAR method.
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Corrections for contour irregularities

� Grid lines are drawn parallel 
to the central beam axis all 
across the field. 

� The tissue deficit (or excess) h is the 
difference between the SSD along a 
gridline and the SSD on the central 
axis. 

� k is an energy dependent parameter 
given in the next slide. 

� The isodose distribution for a flat 
phantom is aligned with the SSD 
central axis on the patient contour. 

� For each gridline, the overlaid isodose 
distribution is shifted up (or down) such 
that the overlaid SSD is at a point k×h
above (or below) the central axis SSD. 
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(1) Manual isodose shift method



Corrections for contour irregularities
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Parameter k used in the isodose shift method

Photon energy (MV) k (approximate)

< 1 0.8

60Co - 5 0.7

5 – 15 0.6

15 – 30 0.5

> 30 0.4



Corrections for contour irregularities

�The correction factor is determined from the attenuation 
factor exp(-µx), where x is the depth of missing tissue above 
the calculation point, and µ is the linear attenuation 
coefficient of tissue for a given energy.

�For simplicity the factors are usually pre-calculated and 
supplied in graphical or tabular form. 
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(2) Effective attenuation coefficient method



Corrections for contour irregularities

�The tissue-air ratio (TAR) correction method is also based 
on the attenuation law, but takes the depth of the calculation 
point and the field size into account.

�Generally, the correction factor CF as a function of depth z,
thickness of missing tissue h, and field size f, is given by:

�TMRs / TPRs also can be used in place of TAR
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Corrections for tissue inhomogeneities

� Radiation beams used in patient treatment traverse 
various tissues that may differ from water in density and 
atomic number.

� This may result in isodose distributions that differ 
significantly from those obtained with water phantoms.

� The effects of inhomogeneities on the dose distributions 
depend upon:

�Amount, density and atomic number of the inhomogeneity.

�Quality of the radiation beam.
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Corrections for tissue inhomogeneities

� Four empirical methods have been 
developed for correcting the water 
phantom dose to obtain the dose at points 
P3 in region (3) beyond the inhomogeneity:

� TAR method

�Power law TAR method

�Equivalent TAR method

� Isodose shift method
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Best way to account for inhomogeneities

�Model based algorithms

�Convolution-superposition method

�Monte Carlo method
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General considerations for photon beams

�Almost a dogma in external beam radiotherapy:

Successful radiotherapy requires a uniform dose 
distribution within the target (tumor).

External photon beam radiotherapy is usually
carried out with multiple radiation beams
in order to achieve a uniform dose distribution
inside the target volume and a dose as low as 
possible in healthy tissues surrounding the
target.
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Criteria of a uniform dose distribution within the 
target

�Recommendations regarding dose uniformity, prescribing, 
recording, and reporting photon beam therapy are set forth 
by the International Commission on Radiation Units and 
Measurements (ICRU).

�The ICRU report 50 recommends a target dose uniformity 
within +7% and –5% relative to the dose delivered to a well 
defined prescription point within the target.
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Methods of beam setup

�Photon beam radiotherapy is carried out under two setup 
conventions
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constant 
Source- Surface Distance

(SSD technique)

isocentric setup 
with a constant Source-

Axis Distance

(SAD technique).



SSD technique

�The distance from the source to the surface of the patient is 
kept constant for all beams.
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SAD technique

�The center of the target volume is placed at the machine 
isocenter, i.e. the distance to the target point is kept
constant for all beams.
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Note:

In contrast to SSD technique,
the SAD technique requires
no adjustment of
the patient setup when 
turning the gantry to the
next field.



SSD vs. SAD technique: Which is better?

�There is little difference between fixed SSD techniques and 
isocentric (SAD) techniques with respect to the dose:

� Fixed SSD arrangements are usually at a greater SSD than 
isocentric beams because the machine isocenter is on the 
patient skin.

� They have therefore a slightly higher PDD at depth.

�Additionally, beam divergence is smaller with SSD due to the 
larger distance. 
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SSD vs. SAD technique: Which is better?

�These dosimetric advantages of SSD technique are small.

�With the exception of very large fields exceeding 40x40 cm2, 
the advantages of using a single set-up point (i.e., the 
isocenter) greatly outweigh the dosimetric advantage of SSD 
beams
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Dose specification

�Parameters to characterize the dose distribution within a 
volume and to specify the dose are:

�Minimum target dose

�Maximum target dose 

�Mean target dose

�A reference dose at a representative point within the 
volume

�The ICRU has given recommendations for the selection of a 
representative point (the so-called ICRU reference point ).
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Dose specification

�The ICRU reference dose point is located at a point chosen 
to represent the delivered dose using the following criteria:

�The point should be located in a region where the dose 
can be calculated accurately (i.e., no build-up or steep 
gradients).

�The point should be in the central part of the PTV.

�For multiple fields, the isocenter (or beam intersection 
point) is recommended as the ICRU reference point. 
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Dose specification
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Example for a 3 field prostate boost 
treatment with an isocentric technique

ICRU reference 
point for multiple 
fields

The ICRU (reference)
point is located at 
the isocenter



ICRU Reference point

�Specific recommendations are made with regard to the 
position of the ICRU (reference) point for particular beam 
combinations: 

� For single beam:
the point on central axis at the center of the target volume . 

� For parallel-opposed equally weighted beams:
the point on the central axis midway between the beam 
entrance points . 

� For parallel-opposed unequally weighted beams:
the point on the central axis at the centre of the target volume . 

� For other combinations of intersecting beams:
the point at the intersection of the central axes (insofar as 
there is no dose gradient at this point).
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Beam combinations and clinical application

�Single photon beams are 
of limited use in the 
treatment of deep-seated 
tumors, since they give a 
higher dose near the 
entrance at the depth of 
dose maximum than at 
depth. 
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Beam combinations and clinical application

�Single fields are often used for palliative treatments or for 
relatively superficial lesions
(depth < 5-10 cm, depending on the beam energy).

�For deeper lesions, a combination of two or more photon 
beams is usually required to
concentrate the dose in the 
target volume and spare the 
tissues surrounding the target 
as much as possible.
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Beam combinations and clinical application

�Dose distributions for 
multiple beams can be 
normalized to 100% just as 
for single beams:

�at zmax for each beam, 

�at isocenter for each beam.

�This implies that each beam 
is equally weighted. 
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Beam combinations and clinical application

�A beam weighting may additionally applied 
at the normalization point for the given 
beam. 

�Example:
Two beams with zmax normalization weighted as

100 : 50% 
will show one beam with the 100% isodose at zmax

and the other one with 50% at zmax.

� A similar isocentric weighted beam pair would show 
the 150% isodose at the isocenter.
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Weighting and normalization



Beam combinations and clinical application

�Example:
A parallel-opposed beam 
pair is incident on a patient. 

�Note the large rectangular 
area of relatively uniform 
dose (<15% variation). 

�The isodoses have been 
normalized to 100% at the 
isocenter. 

�This beam combination is well suited to a large variety of 
treatment sites (e.g., lung, brain, head and neck).
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Parallel opposed beams – Equally weighted



Beam combinations and clinical application

�When? 

�Target volume is one sided, 
but at a larger depth
�Single beam will give very 

high entry dose

�Equally weighted opposing 
beams will give high dose 
throughout the volume 
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Parallel opposed beams – Unequally weighted

�Give more weight to the beam from target side & less to the other

�Remember, it is NOT a magic solution

� Isocenter can be at mid-plane or at center of tumor – ratio of 
weights will differ



Beam combinations and clinical application

�Weight - 100:100 at iso

�At iso, it is now 200%

�Tumor is covered by 187%

�What does this mean?

Beam 1       Beam 2

Tumor 187 cGy      100 cGy         100 cGy

Tumor 300 cGy       

We need to deliver this 160.4 cGy at the iso of each beam
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Parallel opposed beams – Equally weighted

200

187
100

100



Beam combinations and clinical application

�Weight - 100:200 at iso (AP:PA)

�At iso, it is now 300%

�Tumor is covered by 282%

�What does this mean?

Beam 1       Beam 2

Tumor 282 cGy       100 cGy        200 cGy

Tumor 300 cGy 

We need to deliver 106.4 cGy & 212.8 cGy at the iso of AP & 
PA beams respectively
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Parallel opposed beams – Unequally weighted
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Beam combinations and clinical application

�Multiple coplanar beams allows for a higher dose in the 
beam intersection region.

Two examples:
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Multiple co-planar beams

4-field box 3-field technique using wedges



Beam combinations and clinical application

�A 4-field box allows
for a very high dose
to be delivered at the
intersection of the 
beams. 
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Multiple co-planar beams – 4 field box



Beam combinations and clinical application

�A 3-field technique 
requires the use of 
wedges to achieve 
a similar result . 

�Note that the latter can 
produce significant hot 
spots near the entrance 
of the wedged beams 
and well outside the 
targeted area
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Multiple co-planar beams – 3-field technique using wedges
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Beam combinations and clinical application

�Weight 100:100:100 at iso
�At iso it is now 300%
�Target covered by 290%

Beam 1 Beam 2 Beam 3
Target 290 cGy 100 cGy 100 cGy 100 cGy

Target 200 cGy

We have to deliver 69 cGy at the iso of each beam

Note: For the wedged beams, we need to take into account the wedge 
attenuation factor (transmission factor) while calculating time or MUs
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3-field technique using wedges – Equally weighted
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Beam combinations and clinical application

�Weight 60:110:120 at iso (AP:RL:LL)
�At iso it is now 290%
�Target covered by 270%

Beam 1 Beam 2 Beam 3
Target 270 cGy 60 cGy 110 cGy 120 cGy

Target 200 cGy

We have to deliver 44.4 cGy, 81.5 cGy & 88.9 cGy at the iso of 
AP, RL and LL beams respectively.
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3-field technique using wedges – Unequally weighted
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Normalization

�Weight 60:110:120 at iso (AP:RL:LL)

�At iso it is now 290%

�Target covered by 270%

�We normalize 290% to 100%

�Target is covered by 270% or [100/290]*[270] = 93.1%

�The question is: are you going to prescribe your dose to 
100%? or to 93.1%?

�Prescribing at 100% - tumor receives a minimum dose of 93.1% 
of your prescription dose

�Prescribing at 93.1% - tumor receives your FULL prescription 
dose, but some part is overdosed by 7.4% (or even more)
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