From 2D to 3D

3D planning in breast cancer

Prof Ramesh S Bilimagga President- AROI Medical Director - HCG

Road map of the talk

- Should we change from 2D to 3D planning
- What are its advantages
- Review of literature
- How do we do it? Steps
- Types of 3D planning
- Conclusion

Should we change to 3D planning

YES?

Indications

- Following neo-adjuvant chemotherapy
- As a part of Breast conservation therapy.
- Post mastectomy RT
 - 1. Positive nodes: >4; (?)1-3
 - 2. Large tumors:T₃ +
 - 3. Skin involvement

What are its advantages

- Dosimetry
 - Better Dose Homogenicity
 - Better Dose Conformality
 - SIB Feasible

Clinical

- Dose to Heart & Lung can be minimized.
- Better Cosmetic Outcome ?

2D IMRT

Collarbone

Lymph nodes

Cardiac injury in breast RT

Nilsson et al JCO 2011

Review of Literature

- William Beaumont Hospital
- Ontaria Phase 3 Multicenter trial
- Royal Marsden Hospital

William Beaumont Hospital

2D (wedges) vs IMRT

- N = 172, CT plan,
- 1.8 Gy X25
- + 2 GyX 8 photons.

Toxicity	IMRT (%)	Wedges	р
Acute Grade >2			
Dermatitis	41	85	<0.001
Breast edema	1	28	<0.001
Pain	8	8	0.78
Hyperpigmentation	5	50	<0.001
Chronic Grade >2			
Hyperpigmentation	7	17	0.06
Breast edema	1	25	<0.001
Fat Necrosis	0	1	0.46
Induration/fibrosis	0	6	0.11
Good/excellent fibrosis	99	97	0.60

Ontario phase III multicentre trial

2D (wedges) vs 3D IMRT

- N = 331, CT plan
- 2GyX 25

+2 Gy x 8 elec.

Toxicity	IMRT (%)	Wedges	р
Skin Toxicity 3-4	27.1	36.7	0.06
Moist desquamation, all breast	31.2	47.8	0.002
Moist desquamation, Inframammary crease	26.5	43.5	0.001
Pain grade 2-4	26.5	25.5	0.68

Grading NCI CTC 2.0

Royal Marsden phase III randomised trial

2D (wedges) vs 3D IMRT

- N= 240
- Single contour plan
- 25x2 Gy+5x2Gy electrons.
- Reduced late effects
 - change in breast appearance from 58% to 40%
 - Reduction of induration

Toxicity	STD	IMRT (%)	р
	Year 5 As		
Center of the breast	37/117(32%)	25/118(21%)	0.02
Pectoral fold	34/118 (29%)	26/119 (22%)	0.006
Inframammary Fold	28/116 (24%)	20/117(17%)	0.009
Boost site	70/114(61%)	43/115(61%)	<0.001

RCT Analysis – FIMRT in EBC

- 1145 trial plans
- Standard plans Vs FIMRT plans

	FIMRT	2D	p value
V>107% &	34cm3	48.1 cm3	<0.0001
V<95%	(26.4-41.6)	(34.4-61.9)	

- Confirmed FIMRT improved breast dosimetry
- More likely dosimetric benefit large breasts

IMRT for BCT

Cosmesis:

	Physician	Patient
Excellent	63%	33%
Good	33%	50%
Fair/Poor	<1.5%	17%

Predictors:

- 1. Increased Boost volume
- 2. Breast tumor ratio
- 3. Erythema
- 4. Telangiectasia

Kelle et al IJROBP 2012_{Collarbone}

Physics of FIMRT

CT based

- 75% of dose with open fields
- 8 extra segments
- Min. segment size 9 cm2
- Simple planning objectives

Additional benefits

- Less MU, less scatter
- Decreased planning time
- Decreased beam-on time
- Less susceptible to breast deformations.

Breast Contouring

- Breast Contour
 - Consider referred clinical breast at time of CT
 - Includes the apparent CT glandular breast tissue
 - Incorporates consenses definations of anatomical borders
 - Includes the lumpectomy CTV
- Lumpectomy CTV
 - Includes seroma & surgical clips where present

Breast CTV

- The target volume must include all the total glandular breast tissue
- Borders are not clearly visible
- Radio opaque wire around the breast tissue to help guide the approx borders of breast tissue (do not represent the true borders)

Breast Contour – Anatomical Boundaries

Cranial	Caudal	Anterio r	Posterior	Lateral	Medial
Clinical Reference + Second rib insertion	Clinical reference + loss of CT apparent breast	Skin	Excludes pectoralis muscles, chestwall muscles, ribs	Clinical Reference + mid axillary line typically, excludes latissimus (Lat.) dorsi m	Sternal-rib junction

Chest wall delineation

- All borders of the CTV thoracic wall are usually considered to be identical to the CTV breast
- In post MRM radio opaque wires should be positioned around the imaginary original site of the breast & on the scar
- Careful palpation of the thoracic wall & the position of the mastectomy scar should be used well.

CHEST Wall - special

- Most cases the tissue upto the skin is removed and skin is adherent to the thoracic wall.
- Use bolus in such cases to deliver dose to the skin and the thoracic wall.

Chest wall contour-Anatomical Boundaries

Cranial	Caudal	Ante rior	Posterior	Lateral	Medial
Caudal border of the clavicle head	Clinical reference+ loss of CT apparent contralateral breast	Skin	Rib-pleural interface. (Includes pectoralis muscles, chestwall muscles, ribs)	Clinical Reference/ mid axillary line typically, excludes lattismus dorsi m.	Sternal - rib junction

Heart

Types of IMRT

- FIMRT
 - Beams parameters specified / manually changed as reqd.
 - Dose distribution computed
 - Manual iterations
 - Time consuming
 - Subjective function

- Inverse IMRT
 - Dose distribution specified
 - Computerised beam parameters
 - Auto iterations
 - Quicker
 - Objective function

Forward plan IMRT

Medial Tangential Segments

egments ateral Tangen

Plan Evaluation

- Target coverage
- Homogeneity of dose distribution
- Dose distribution on all slices
- Dose to organs at risk
 - Opposite breast
 - 2. Lungs: Ipsilateral and combined
 - 3. Heart : Especially in Left sided

Plan goals

PTV	
V95	≥ 95%
V107	< 2% or 2 cc
Lung V 20 Gy	<15%
Heart V 50	≤ 1 cc

Lymph

Collarbone

Prone IMRT at MSKCC

- Minimize radiation to the heart and lungs by utilizing gravity effect on mobile breast
- Specify beam direction (Two tangent fields) before inverse planning process to avoid an increase in integral dose
- Bring dose intensity pattern to field edge to account for minimal edema through treatment.

Breast board Patient in Position CT scan

Conclusion

- Reduce Acute Toxicity
- Late effects Data Awaited
- No increased survival benefit
- IMRT feasible for Intact Breast

2nd Indian Cancer Congress 2017 Bengaluru welcomes you to

