Radiotherapy Planning
(Contouring Lung Cancer for Radiotherapy dose prescription)

Dr Raj K Shrimali
Let us keep this simple and stick to some basic rules
Patient positioning

- Must be reproducible
- Must be stable and comfortable
- Options are:
 - arms above the head, T-bar, Vac-loc, wing board, etc
Planning image

• IV contrast should be used, if possible
• Thin slices enable high-resolution DRRs

• The best concordance between measured and actual diameters and volumes has been obtained with the following settings:
 • W = 1600 and L = -600 for parenchyma
 • W = 400 and L = 20 for mediastinum [16].
• improves consistency in contouring

» Giraud P. Radiother Oncol 2000; S39.
Planning image

- Fluoroscopy for motion – not the best
- Slow CT is better

- 4D CT with phase binning and composite image reconstruction – gold standard

- To be correlated with PET-CT images

» Senan S et al. Radiother Oncol 2004; 71: 139-146
Decision on lymph nodes

- Lymph nodes with a short axis diameter of ≥1 cm are generally considered pathological

- Included in the GTV unless
 - metastases have been excluded by other means such as mediastinoscopy or PET scanning

• Table
Elective nodal irradiation

- No evidence to suggest that elective nodal irradiation is indicated in any patient group receiving curative / radical doses of radiotherapy for NSCLC

- Publications where disease recurrence patterns were established following involved field radiotherapy in stage III NSCLC:
 - no induction chemotherapy was administered in one study
 - a majority of patients in a second study received no chemotherapy

- In all these studies, the incidence of isolated failures in initially uninvolved nodes was <7%.
• Induction chemotherapy has not been shown to improve local control over that achieved using radiotherapy alone,

• the entire pre-chemotherapy GTV is to be treated to the full dose
 – use co-registered pre-treatment and planning CT scans
 – a more accurate reconstruction of pre-chemotherapy target volumes
• Three-dimensional software tools
 – for generating 3D margins around contoured GTVs or CTVs
 – they decrease inaccuracies and reduce inter-clinician variations in contouring

Functional imaging – PET

• More accurate staging
• More accurate tumour outlining
 • Distinguishing tumour from collapse
 • Selective irradiation of involved mediastinal LNs
• Targeted dose escalation
 • RTOG phase-II trials ongoing
FDG-PET

• FDG-PET scans are superior to CT scans alone for correctly staging mediastinal nodes

• Incorporating FDG-PET findings into CT-based planning scan
 – Results in changes to radiotherapy plans in a significant proportion of patients [18,37,72]
 – May increase or decrease target volumes
 – Can reduce inter-observer variability in delineating target volumes [37].
 – Inflammation or infection also influences FDG-PET uptake
Functional imaging – PET

- Reduces tumour delineation variability among radiation oncologists
 - Van Der Wel et al. IJROBP 2005; 61:649-55.

- Makes radiation fields generally smaller, may lead to less side-effects
 - Belderbos et al. IJROBP 2006; 66: 126-34.

- Selective mediastinal node irradiation did not lead to higher isolated nodal recurrences
Margins – CTV

• Standard recommendation:
 – Margin for microscopic extension is 5–6 mm for RT planning in NSCLC

Margins – PTV

• To establish the random and systematic errors in treatment planning and delivery at your institution

• To establish tumour motion and organ motion

• 3D margins for the PTV can be calculated based upon the requirement for a certain coverage probability

 – e.g. a large part of the CTV (99%) should receive 95% of the prescribed dose

Organs at risk (OAR) – Spinal cord

• Traditional: 44 Gy in 2Gy/ fraction
• Some trial protocols: 48Gy in 30 fractions

• QUANTEC paper
 – D_{max} of 50Gy – 0.2% risk of myelopathy (for partial or full cross-section)
 – D_{max} of 13Gy (single fraction) – 1% risk of myelopathy (for partial or full cross-section)
 – D_{max} of 20Gy (hypofractionation) – 1% risk of myelopathy (for partial or full cross-section)
Organs at risk (OAR) – Lungs

• Established facts: the following predict the risk of high-grade radiation pneumonitis:
 • V20; i.e. the volume of both lungs minus the PTV receiving 20 Gy
 • mean lung dose

• Whole lung V20 ≤ 30%
 • <20% risk of symptomatic pneumonitis

• Mean lung dose = 20Gy
 • 20% risk of symptomatic pneumonitis
 » QUANTEC paper
• Pneumonitis/fibrosis
 – < 10% of patients
 – Can be fatal
 – Can have a long term impact on quality of life
Follow-up (January 2010)
Organs at risk (OAR) – Oesophagus

• High-grade esophagitis
 – an important dose limiting toxicity for chemo-radiotherapy
 – it correlates with treatment scheme used and volume of irradiated organ

• The incidence of grades 3–4 acute esophagitis is low (5%) with conventional fractionation, even when elective nodal irradiation is performed

Toxicity of concurrent CTRT

• **Oesophagitis**
 – Up to 30% of patients
 – Can lead to dehydration and hospitalisation
 – Transient
 – Manageable
 – Very rarely leads to long term complications

• **Pneumonitis/fibrosis**
 – < 10% of patients
 – Can be fatal
 – Can have a long term impact on quality of life
Organs at risk (OAR) – Others

• There is presently limited data correlating 3D planning parameters with late cardiac and pericardial toxicity

• As the 5-year disease-free survival in stage III NSCLC remains under 20%, these risks may not be an issue for most patients

 » Senan S et al. Radiother Oncol 2004; 71: 139-146
"THIS COULD GET TRICKY -- BEFORE I CAN OPERATE, I'LL HAVE TO FILE AN ENVIRONMENTAL IMPACT STATEMENT."
OARs

- Lungs: auto-contouring tools, then visual check
- Spinal canal
- Brachial Plexus: Pancoast tumours, SABR/SBRT
- Heart / Pericardium: some trial protocols, SABR/SBRT
- Central airways (prox bronchial tree): for SABR/SBRT
Contouring OARs
Brachial Plexus

• Only major trunks to be contoured

• Using Subclavian and axillary vessels as surrogate

• Start inferiorly at the bifurcation of the Brachiocephalic vein/artery

• Follow the vessels upwards

• Stop when the vessels cross the Second rib
Brachial Plexus

Some coronal images
Heart & Pericardium

- Heart is to be contoured with the pericardial sac

- Superior limit of the contouring is the inferior extent of the aortic arch

- Inferior extent is the lowest part of the left ventricle’s inferior wall, that is distinguishable from the liver

- Includes the heart, main pulmonary vessels, ascending aorta, SVC.
Heart & Pericardium

Some coronal images
Proximal Bronchial Tree

• Start at least 10 cm superior to the extent of the PTV or 5 cm superior to carina

• PBT + 2 cm all around is the “no-fly zone”

• PTV (but not the ITV) can encroach on the “no-fly zone”
Proximal Bronchial Tree

Some coronal images of the PBT (green) and the “no-fly zone” (yellow)
Prescriptions can be ...

- **Dose based**
 - The PTV should receive 60Gy
 - The spinal cord should not receive >44-48Gy

- **DVH based**
 - 95% of the PTV should receive 60Gy
 - No more than 35% of the lung(-PTV) should receive 20Gy or more

- **Biological**
 - The tumour control probability should be >95%
 - The risk of grade 2+ lung toxicity should be <8%
 - *Less known about exactly how to do this/what numbers to use*
Plan Evaluation

• Check plan against dose constraints
 – Have objectives / constraints been met
• Isodoses
 – Scroll through specific isodose levels
 • 95% of PTV(s)
 • Identify hot spots
 – ? dose dumped into an unexpected place
• Look at Dose Volume Histogram
• Check for the unexpected!
 – Things that you had not thought of!
Dose volume histograms

- 3D plan information can be summarised into a 2D graph:
 - but remember some spatial information is lost
 - a DVH only tells you information about the structures you have accurately contoured

- Volume and dose statistics can be read off from a DVH
 - D_V (absorbed dose in fraction V of the volume)
 - V_D (volume receiving at least an absorbed dose D)
Pitfalls

• Things to look out for:
 – Structures undefined / unclear nomenclature
 – Over complication
 – Hot spot outside PTV
 – Baggy PTV coverage
 – Build up region
 – Bolus
Now, some contouring...........

Thank you