# ADJUVANT RADIOTHERAPY -CARCINOMA LUNG

Prof Ramesh S Bilimagga President AROI Group Medical Director - HCG



### ADJUVANT THERAPY

Additional cancer treatment given after primary treatment to control the microscopic disease in order to lower the risk of recurrence.



National Cancer institute

## TYPES

- Radiation therapy
- Chemotherapy
- Hormone therapy
- Biological therapy
- Combination any of the above



# WHY ADJUVANT

- NSCLC constitutes 80% of Lung cancer
  - 30% complete surgical resection
  - long term survival.
- Post Surgery Recurrence rates
  - **STAGE I 20 %**
  - STAGE IIIA 50 %
- Intra thoracic recurrence
  - Along surgical stump
  - Mediastinal lymph nodes



# CONTD..

- Chemotherapy and Radiotherapy evaluated to improve prognosis.
- High rate of local failure after surgery & Post op Chemo
  - New interest on PORT came into picture.



# SURGERY IN CALUNG

• Wedge Resection

Segmentectomy

Lobectomy

• Pneumonectomy



# INDICATIONS - PORT

# Stage IIIA

- Close margin (<5mm),</p>
- Positive margin,
- N2 disease,
- Nodal ECE.



# RT PLANNING

- Immobilization
- Simulation scan
- Transferring images to planning system
- Contouring
- Dose constraints to both target and OAR's
- Plan approval
- Daily verification of treatment setup
- Plan execution
- Weekly review

# IMMOBILIZATION





# SIMULATION

- Supine position
- Spine straight
- Hands above the head
- Lasers aligned
- Orfit cast
- Contrast+/\_
- Serial CT
- Thickness <5mm</p>

# CONTOURING



Practical Radiation Oncology Jan-Mar 2013

## MEDIASTINAL LYMPHNODES





#### **Superior Mediastinal Nodes**

- 1 Highest Mediastinal
- 2 Upper Paratracheal
- 3 Pre-vascular and Retrotracheal
- 4 Lower Paratracheal (including Azygos Nodes)

N<sub>2</sub> = single digit, ipsilateral N<sub>3</sub> = single digit, contralateral or supraclavicular

#### **Aortic Nodes**

- 5 Subaortic (A-P window)
- 6 Para-aortic (ascending aorta or phrenic)

#### **Inferior Mediastinal Nodes**

- 7 Subcarinal
- 8 Paraesophageal (below carina)
- 9 Pulmonary Ligament

#### N<sub>1</sub> Nodes

- O 10 Hilar
- 11 Interlobar
- 12 Lobar
- 13 Segmental
- 14 Subsegmental

# MEDIASTINAL LN'S



CTV for right lung cancers includes bronchial stump and LN stations 2R, 4R, 7, and 10 To 11R.

# MEDIASTINAL LYMPHNODES



CTV for left lung cancers includes bronchial stump and LN stations 2R, 2L, 4R, 4L, 5, 6, 7, and 10 To 11R.

# VOLUMES



LRF sites in left- and right-sided lung cancers are shown. The proposed PORT fields for left- and right-sided lung cancers are presented. Solid star symbols are multiple-site failures (patients failing in multiple LRF sites simultaneously); open star symbols are isolated failures (patients with a single LRF site). For patients with left-sided tumors, all LRF would have been covered by the proposed PORT CTV. For patients with right-sided tumors, 83% (39 of 47) LRF would have been contained in the PORT field; 17% (8 of 47) LRF were outside the proposed PORT field and observed in 6 patients (

. CTV = clinical tumor volume; LRF = local-regional failure; PORT = postoperative radiation therapy.

#### • CTV to include

- Positive margin or microscopic extension disease.
- Surgical clips in positive margin Stage 1 & 2

●PTV – 1cm around CTV

 3D CRT will improve the loco regional control rate compared to 2D.

# STATUS OF LUNG PORT

 No clear cut consensus on definition of the extent of CTV

• After PORT meta analysis (1998) PORT in ca lung banned in many RT departments world wide.

# PORT RESULTS RATIONALE

• In the previous trials most of the patients with stage I & II with NO/N1 were also included which showed detrimental effect.

- But for N2 patients there was no clear adverse effect.
- So the trials mainly started for those patients with N2 disease

# REVIEW OF LITERATURE

| Study                      | Stage  | n of patients | Dose<br>(Gy) | Local<br>recurrence (%) | Overall<br>survival (%) | Follow-up<br>method |
|----------------------------|--------|---------------|--------------|-------------------------|-------------------------|---------------------|
| Astudillo and Connill 1990 | IIIA   | 60            | -            | 20%                     | 28%                     | 3-yr actuaria       |
|                            |        | 86            | 45-50        | 13%                     | 20%                     |                     |
| Green et al. 1975          | I-IIIA | 94            | -            | NR                      | 16%                     | 5-yr crude          |
|                            |        | 125           | 50-60        | NR                      | 31%                     |                     |
| Choi et al. 1980           | IIIA   | 55            |              | 31%                     | 8 %                     | 5-yr actuaria       |
|                            |        | 93            | 40-56        | 14%                     | 43%                     |                     |
| Chung et al. 1982          | I-IIIA | 68            | _            | 32%                     | 28%                     | 3-yr crude          |
|                            |        | 50            | 46           | 10%                     | 40%                     |                     |
| Paterson et al. 1962       | T3N0-2 | 22            | 3.75         | 27%                     | 30%                     | 5-yr actuaria       |
|                            |        | 13            | 20-50        | 0                       | 56%                     |                     |
| Kirsh et al. 1982          | IIIA   | 20            | -            | NR                      | 0%                      | 5-yr crude          |
|                            |        | 110           | 50-60        | NR                      | 26%                     |                     |
| Sawyer et al. 1997         | IIIA   | 136           | -            | 60%                     | 22%                     | 4-yr actuaria       |
|                            |        | 88            | 45-66        | 17%                     | 43%                     |                     |

Risk of local recurrence lower with PORT (25%-35%) based on the above results

# VIEW OF LITERATU

| Study                        | Stage      | n of patients | Total dose/<br>fraction size | LRR<br>(%)       | p    | 5-yr SR<br>(%) | p (in favor)   |
|------------------------------|------------|---------------|------------------------------|------------------|------|----------------|----------------|
| Van Houtte et al. 1980       | T1-3N0     | 104           |                              | 10.9%            | NS   | 43%            | <.05 (surgery) |
|                              |            | 98            | 60/2 Gy                      | 1.2%             |      | 24%            |                |
| Lung Cancer Study Group 1986 | II-III SCC | 120           |                              | 41%              | .001 | 40%            | NS             |
|                              |            | 110           | 50.4/1.8                     | 3%               |      | 40%            |                |
| Dautzenberg et al. 1999      | I-II-III   | 355           |                              | 28%              | NS   | 43%            | .002 (surgery) |
|                              |            | 373           | 60/2-2.5                     | 22%              |      | 30%            |                |
| Mayer et al. 1997            | I-II-III   | 72            | _                            | 20% <sup>a</sup> | <.01 | 20.4%          | NS             |
| 1777                         |            | 83            | 50-56/2                      | 7%ª              |      | 29.7%          |                |
| Trodella et al. 2002         | T-2N0      | 53            | -                            | 23%              | 0.19 | 58%            | .048 (PORT)    |
|                              |            | 51            | 50.4/1.8                     | 2.2%             |      | 67%            |                |
| Feng et al. 2000             | II-III     | 182           | _                            | 33.2%            | .01  | 40.5%          | NS             |
| 2000                         |            | 183           | 60/2                         | 12.7%            |      | 42.9%          |                |

aCumulative rate of local recurrences.

bStudy not included in the meta-analysis published in 1998.

Abbreviations: LRR, local recurrence rate; NS, nonsignificant; PORT, postoperative radiation therapy; SCC, squamous cell carcinoma; SR, survival rate.

Randomized trials showing the results of with / without PORT

# **SEER (JCO 2006)**

- 7,400 patients, stage II–III NSCLC post op + PORT
- T3-T4 advanced nodal stage
  - Involved vs Sampled ratio of Lympnodes
- On multivariate analysis
  - older age T3,T4 N2 stage male,
  - fewer sampled LN greater no of LN involved had negative impact on survival.
- 5-year OS for
- $\bullet$  N2 patients (20 $\rightarrow$ 27%, HR 0.85)
- N0 (41  $\rightarrow$  31%, HR 1.2)
- $\bullet$  N1 (34  $\rightarrow$  30%, HR 1.1)

### PORT META-ANALYSIS TRIALIST GROUP

- 2128 patients.
- 9 randomised trials of PORT vs Sur
- 21% relative increase in the risk of death with RT
- Adverse effect was greatest for Stage I,II
- St.III (N2): no clear evidence of an adverse effect

Lancet 1998;352:257

## PORT TRIALS

• Postoperative RT should be used outside of a clinical trial in Stage I, II lung cancer when surgical margins are positive and repeated resection is not feasible.

# VAN HOUTTE ET AL (1980):

- NSCLC Stage I–II
- Observation vs Post-op 60Gy to mediastinum.
- RT improved local-regional control,
- 5-year OS 24% RT vs. 43% with observation
- Increased pneumonitis.
- Study criticized because used Co-60 machines, large field size, and no CT planning.

# ANITA TRIAL

#### (ADJUVANT NAVELBINE INTERNATIONAL TRIALIST ASSOCIATION)

- $\bullet$  1994- 2000. N = 840, Stg IB to IIIA
- Post op adjuvant chemo or observation and RT was not randomised but decided before initiation of study.
- RT dose 45-60Gy at 2Gy/#

| MEDIAN<br>SURVIVAL | pN1<br>PORT to both a<br>patic |         | pN2 patients PORT to both arms for selected patients |         |  |
|--------------------|--------------------------------|---------|------------------------------------------------------|---------|--|
|                    | WITH OUT RT                    | WITH RT | WITH OUT RT                                          | WITH RT |  |
| Chemotherapy       | 93.6m                          | 46.6m   | 23.8m                                                | 47.4m   |  |
| Observation        | 25.9m                          | 50.2m   | 12.7m                                                | 22.7m   |  |

# ECOG - 3590 TRIAL

- 488 pt's
- Stage II IIIA NSCLC post op negative margins.
- RT Vs CT+RT
- Result No difference in LC or survival.

# RTOG 9705 TRIAL - PHASE 2

- 88 pt's
- Stage II to IIIA NSCLC post operative CT+RT
- CT- carboplatin + paclitaxel
- $\bullet$  RT 50.4Gy/28Fr
- + Boost 10.8Gy/6Fr for Extra nodal extension or T3 lesions.

# RTOG 9705

Median F/U 56.7 months. Median OS 56.3 months

|       | os  | PFS        |
|-------|-----|------------|
| 1YEAR | 86% | <b>70%</b> |
| 2YEAR | 70% | <b>57%</b> |
| 3YEAR | 61% | 50%        |

 RTOG conclusion- with acceptable toxicities there might be improvement in OS & PFS with chemoradiotherapy in resected NSCLC pt's.

## PATTERNS OF FAILURE

- Rt lung ipsilateral superior Mediastinal nodes.
- Lt Lung bilateral superior Mediastinal nodes.
- Mediastinal CTVs
  - Involved LN's & a margin corresponding to the upper and lower LN's to the involved LN area and all LN's lie between two noncontiguous involved LN's.

# TREATMENT TECHNIQUES

# 3D-CRT

- Target can be seen and contoured.
- Coverage can be assessed to the target.
- Dose to the OAR's can be verified and if required can be optimized by changing the weightage to the beams.

# IM-IGRT

- Target coverage will be better at the same time the OAR's can be spared better than 3D-CRT.
- Daily verification can be done by either KVCT/MVCT image, which will improve the accuracy of treatment and reduces the chances of random errors

# DOSES

- If R0 resection
- If N2 with ECE
- If positive margin
- If gross residual disease along with concurrent chemo.

- 50-56Gy / 25-28#
- 10-16Gy boost.
- 60Gy / 30#
- 66-70Gy / 33-35#

# CONCLUSION

- Radiotherapy is a proven adjuvant therapy in Stage 1,2 (+ margin) & 3A
- IM-IGRT > 3D CRT > 2D treatment
- Volume delineation is of prime importance

# THANK 40U