IMRT in Head & Neck Cancer

Dr Vijay Anand P. Reddy

- Introduction
- Delivery techniques
- Planning steps, Tumor vol delineation
- Clinical studies
- Advantages, Pit falls

3D-Conformal Radiation Therapy

3D-CRT

- Radiation intensity is uniform within each beam
- Modulation conferred only by wedges.

Intensity Modulated Radio Therapy

Conformal Radiation Therapy with Non-uniform intensity distributions generated via Inverse planning by a computer optimization process.

"Intensity of Radiation is modulated"

How does I M R T works

Each field is subdivided into numerous "beamlets"

whose intensities are individually modulated

to achieve a <u>nonuniform</u>
<u>dose contribution</u> from
each field.

How to modulate RT fields?

Beamlet modulation is accomplished by actively moving multiple leaves during radiation treatment

thus achieving the desired dose distribution throughout the tissue volume.

How does I M R T work

- 10 x 10 cm port is divided into
 1 cm² beamlets
- There are now 10⁺² beams in the port
- Each can have an intensity weight of 0 100%
- Then we have 10^{+200} possibilities
- If we use 5 ports we have 10^{+1000} possibilities

Inverse Planning

- We need to optimize Beam location, energy, modality
- High speed computer tests all the possibilities of a human decision for a best possible solution
- The mathematical process of defining a solution is known as "Inverse planning"

Computer Optimization

Forward Planning:

The beam geometry i.e beam angle, shape, modifier, weights etc. is first defined, followed by calculation of the 3D dose distribution.

Inverse Planning:

The user specifies the goals, the computer then adjusts the beam parameters to achieve the desired outcome.

IMRT

Primary advantage of this technology

- Treating target volumes adjacent to critical or sensitive normal tissues
- Delivery of therapeutic radiation doses to target
- Minimizing normal tissue toxicity.

I M R T delivery techniques

1. Slit MLC:

- Narrow rectangular slit MLC
- Rotates in an arc around the patient
- Treats a target vol with multiple thin slices.

- Actively modulated narrow slit beams
- as the treatment gantry and MLC rotate
- pt moves through gantry ring on a couch.

IGRT

Tomotherapy

I M R T delivery techniques

Standard MLC:

Beams can be delivered via multiple fixed gantry positions with a standard MLC

3. 'Step and shoot'

- Delivers Sequential subfields with
- Individualized intensity distributions from each gantry position,
- Radiation beam off between subfields.

4. Dynamic mode

• MLCs move while radiation beam is on_{VAR}

I M R T delivery techniques

- 5. Intensity modulated Arc therapy (IMAT) combining rotational arcs with dynamic multileaf collimation.
- 6. Fully dynamic systems
 MLC, gantry, and treatment
 couch all move independently at
 some point during beam delivery

Rationale of IMRT in H & N Cancer

- 1. Anatomically complex H&N region
 - an ideal option IMRT.
- 2. Lack of organ motion in the H&N region
 - an ideal region for IMRT.
- 3. Allows for dose escalation
 - concomitant boost ideal for H&N

IMRT Sites in H&N

- Nasopharynx
- Sinonasal region
- Parotid gland
- Tonsil
- Buccal mucosa, Gingiva
- Thyroid
- Tumor tracking along the cranial nerves.

Steps of IMRT

- Clinical evaluation & assessment
- Simulation
- Planning CT/MRI/PET-CT scan
- Target vol Delineation GTV,CTV,PTV
- IMRT Planning, Dose Vol Histogram
- QA
- Execution of IMRT

Steps of IMRT in H&N Cancer Clinical Assessment

- Pt is seen by Surgeon, RO, MO
- Examination of the H&N region
 - Indirect laryngoscopy
 - Fiberoptic nasopharyngolaryngoscopy
- An illustration of the physical findings
 - Demonstrating the primary tumor extent
 - Lymph-adenopathy

Steps of IMRT in H&N Ca ...

Clinical Assessment...

- Pretreatment dental consultation
 - Extraction of bad teeth
 - Initiation of prophylactic fluoride therapy.
- Pretreatment ophthalmology and audiology consults
- Thyroid function tests baseline.
- Review of imaging studies and further workup

SIMULATION

Traction

- Shoulder traction to minimize shoulder in RT fields
- Palpable masses & incisional scars are outlined by
- For CT, use iv contrast to diff vessels from masses or LN

Image registration & Tumor volume delineation

- Planning CT scan
 - with i.v contrast in the treatment position
- MRI
 - better delineation of normal tissue & tumor
- FDG-PET-CT
 - Improve tumor delineation better than CT alone

It is imperative that the radiation oncologist be trained in the interpretation of all images used for structure localization

PET Scores over others!

CT, MRI
Anatomical imaging

PET
is functional imaging
Active viable tumor

Limitations of Anatomical Imaging

- Tumor and normal tissue have similar density or intensity
- Tumor and normal tissue have similar properties of contrast enhancement

Advantages of Biological Imaging..

Will not be affected with post op anatomical disturbances!

Clinical applications of FDG-PET in Target volume delineation...

- Lung Cancer
- Head and Neck Cancer
- Gynecological Cancers
- GI tract Cancers
- Brain tumors
- Lymphomas

Impact of PET-CT in H & N Cancer

Author	Patients	Change of GTV using PET	Increase in GTV	Decrease in GTV	Remarks
Rahn, 1998	22(prim)	41%	41%	0%	No image fusion
	12(recur)) 58%	58%	0%	
Nishioka, 2002	21	71%	0%	71%	PET/CT/MRI fusion
Ciernik, 2003	12	50%	17%	33%	Integrated PET-CT
Daisne, 2004	29	93%	18%	75%	CT-PET image fusion
Paulino, 2005	40	100%	-	-	PET/CT/MRI and surgical specimen image fusion

IMRT-Target volume

- IMRT requires a thorough understanding of target delineation in the complex H&N
- Areas to be delineated on the planning CT
 - Gross tumor volume (GTV)
 - Subclinical disease (CTV)

Target volumes

- Gross tumor volume GTV (Primary & LN)
- Clinical Target volume CTV
 - > Primary incl subclinical + elective nodal regions
- Planning Target volume (gross)
 - > 1 cm margin everywhere
 - > except post along the skull (0.5 cm margin)
- Planning Target volume PTV (elective)
 - > Uniform .5 cm margin all round

IMRT Target Volume Specification (CWG recommendation)

Target volume(s) should follow the recommendations of ICRU Reports 50 and 62.

Clinical Target Volume (CTV)

- targeting the sub-clinical disease
- Every primary in H&N region there are associated LN regions or levels, that are at risk & must be contoured.
- Knowledge of these levels and their anatomic boundaries is essential.
- The RTOG, EORTC and DAHANCA groups have all established CTV guidelines for the clinically and radiographically negative, surgically nonviolated neck
 - imaging based nodal atlases

H&N IMRT practice heterogeneity

MAESTRO Jan. 2007

Harari et al., 2005

Radiotherapy & Oncology 69: 227, 2003 http://www.rtog.org/hnatlas/main.html

CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines

Vincent Grégoire^{a,*,1}, Peter Levendag^{b,1}, Kian K. Ang^c, Jacques Bernier^d, Marijel Braaksma^b, Volker Budach^e, Cliff Chao^c, Emmanuel Coche^f, Jay S. Cooper^c, Guy Cosnard^f, Avraham Eisbruch^c, Samy El-Sayed^g, Bahman Emami^c, Cai Grau^h, Marc Hamoirⁱ, Nancy Lee^c, Philippe Maingon^j, Karin Muller^b, Hervé Reychler^k

Steps...

Dose volume histograms (DVHs)

Accurate calculation of DVHs

Biological indices (e.g., normal tissue complication probability)

Mandate the inclusion of the entire extent of the relevant structures

Normal tissues Contouring...

- Parotid glands
- Spinal cord
- Brainstem
- Cochlea
- Optical structures
- Pituitary gland

Discussion with Physicist..

Communicating pertinent information

- Brief clinical findings
- Location of the primary
- Adenopathy
- High risk regions
- Adjacent critical structures

IMRT - Ca Oropharynx

Table 1. Locoregional Control After IMRT for Head and Neck Cancer

Study	No. of Patients	Primary Site	RT		Follow-Up (months)		Control		
			Definitive	Postoperative	Median	Range	Local (%)	Regional (%)	Interval (years)
Chao et al ¹⁹	126	Various	52	74	26	12-55		85	2
Lee et al ⁶	67	NPX	67	0	31	7-72		98	4
Chao et al ²⁰	74	OPX	31	43	33	9-60		87	4
Eisbruch et al* ²¹	133	Various, non-NPX	60	73	32	6-107		82	3
Kam et al ³³	63	NPX	63	0	29	845	92	98	3
Kwong et ai ³⁴	33	NPX	33	0	29	11-42	100	92	3

Abbreviations: IMRT, intensity-modulated radiotherapy; RT, radiotherapy; NPX, nasopharynx; OPX, oropharynx.

^{*}Patients treated from 1994 to 2002; three-dimensional conformal radiotherapy was used before 1996, and IMRT thereafter.

IMRT ± Chemo for NPC (Single Institutions)

Center	N	Stage	FU (mo)	LC DM-Free
Bucci IJROBP, 2004(abs)	118	50% T3-4	30	96% 72% (4-year data)
Kam IJROBP, 2004	63	51% T3-4	29	92% 79% (3-year data)
Wolden IJROBP, 2006	74	51% T3-4	35	91% 78% (3-year data)

IMRT for NPC RTOG Protocol H-0225 (Lee & Garden)

Stage: I-IVb

Histology:

WHO I-III

IMRT:

R

Е

G

S

Е

2.12 Gy/F/d X 33 F

to \geq 95% of GTV

1.8 Gy/F/d X 33 F

to \geq 95% of CTV

Chemotherapy (≥T2b or N+)

Concurrent: Cisplatin x 3

Adjuvant: Cisplatin + 5-FU

IMRT for Oropharyngeal SCC

RTOG Protocol H-0022 (Eisbruch & Chao)

R

Stage: T1-2 N-1

Site:

Tonsil, BOT, Soft Palate

Gross disease PTV:

66 Gy/30 FX

Subclinical disease PTV:

54-60 Gy/30 FX

Boost of 4-6 Gy/2-3 FX to the tumor PTV allowed

RTOG 0022 – ASTRO 2006

- Study population: 67 patients (14 centers)
- Tumor: tongue base-20 (39%), tonsil-33 (49%), soft palate 8 (12%)
- > Stage: T1-25%, T2-75%; N0-57%, N1-43%
- Median follow-up: 1.6 (0.2-3.8) years
- > LR progression: 3 patients (4.9%)
- > No metastatic disease observed

IMRT for Oropharynx Cancer

- > 2000-June 2003: 133 patients
- > Age: 30-75 (53) years; 85% male
- ➤ Site: tonsil-52%; tongue base-40%
- ightharpoonup T1-2(x): 114; T3-4: 19
- Chemotherapy: 28 (T3-4 or N2-3)
- > 3-Y local control: 95%
- > 3-Y overall survival: 93%

Recovery of Saliva Flow (A vs C)

Advantages – Variable doses

➤ Boosting doses within targets

Diff doses per fraction to multiple target vol within a treatment field.

- Simultaneous Integrated Boost
 Concomitantly with standard doses to
 the remainder of targets
- >70Gy vs 45-55Gy within the target vol

Advantages of I M R T...

Eliminate the need for standard fields

- Low anterior neck field.
- Electron boost

Advantages of I M R T...

Re-treatment

Re-treatment of radiated H&N ca Possible due to its ability to spare adjacent normal tissues with acceptable target dose uniformity.

Sparing of normal tissues

Uninvolved tissue sparing of multiple sites to reduce short and long term side effects

- Major and minor salivary glands, most notably parotids, mandible, oral cavity, larynx and pharynx.
- Critical structures Cochlea, temporal lobes, optic pathways, spinal cord, brainstem & brain

Pit falls

- Smaller PTV margins, Sharper dose fall-off can allow for geographic misses if target localization and immobilization are not accurate
- More complex, more beams/arc increase the overall treatment time decrease dose rate!
- Lack of uniformity no IMRT planning standards for every anatomical site.
- Diff to compare data between institutions

Changes in Anatomy during course of Rx

Planning CT

Barker et al. IJROBP 59:960, 2004 & Lei Dong et al. (MDACC)

Dosimetric Impact of Anatomic Changes

Original Plan

Four Weeks Later (Mapped back to the original planning CT using deformable registration)

Barker et al. IJROBP 59:960, 2004 & Lei Dong et al. (MDACC)

Conclusion

- IMRT is an obvious choice for H&N Ca (NP,OP,PNS etc)
- Obtains tight dose gradients around gross & sub-clinical disease when desirable
- Tumor in close vicinity of the cord, parotids & brain stem
- Re-irradiation possible
- Requires expertise
- Newer tech-needs longer f u to testify its advantage

Lecture, lecture, lecture ...

