IMRT /IGRT /Radiosurgery/ SBRT : Clinical Aspects

Dr. Kaustav Talapatra
Head, Radiation Oncology
Kokilaben Dhirubhai Ambani Hospital, Mumbai
The Evolution of Radiation Therapy

1ST Telecobalt machine in August 1951 in Sasaktoon Cancer Clinic, Canada

1960’s
The First Clinac

1970’s
Cerrobend Blocking
Electron Blocking

Standard Collimator
The linac reduced complications compared to Co60

1980’s
Multileaf Collimator
Blocks were used to reduce the dose to normal tissues

1990’s
Computerized 3D CT Treatment Planning

1990’s
Dynamic MLC and IMRT
MLC leads to 3D conformal therapy which allows the first dose escalation trials

1990’s
Computerized IMRT introduced which allowed escalation of dose and reduced compilations

2000’s
High resolution IMRT
IMRT Evolution evolves to smaller and smaller subfields and high resolution IMRT along with the introduction of new imaging technologies

9/25/2010
PARADIGM SHIFTS IN MANAGEMENT

Advances in Radiotherapy

Physical
- Better physical and biological imaging
- Improvements in planning
- Improvements in treatment delivery

Biological
- Altered fractionation

Improvement in survival and quality of life
CONFORMAL THERAPY

It is described as radiotherapy treatment that creates a high dose volume that is shaped to closely “Conform” to the desired target volumes while minimizing the dose to critical normal tissues.
Features of Conformal Radiotherapy

1) Target volumes are defined in three dimensions using contours from a volumetric imaging modality.

2) Multiple beam directions are used to crossfire on the targets.

3) Individual beams are shaped or intensity modulated to create a dose distribution that conforms to the target volume and desired dose levels.

4) Use of image guidance, accurate patient setup, immobilization and management of motion to ensure accurate delivery of the planned dose distributions to the patient.
Types of Conformal Radiation

- Two broad subtypes:
 - Techniques aiming to employ geometric field shaping alone (3D-CRT)
 - Techniques to modulate the intensity of fluence across the geometrically-shaped field (IMRT)
Conventional RT Beam
Uniform Beam Intensity
squares / rectangles

Conformal RT Beam
Uniform Beam Intensity

IMRT Beam
Non-Uniform Beam Intensity
WHAT IS 3-D CRT

To plan & deliver treatment based on 3D anatomic information. such that resultant dose distribution conforms to the target volume closely in terms of

Adequate dose to tumor &
Minimum dose to normal tissues.

The 3D CRT plans generally
use increased number of radiation beams
to improve dose conformation and conventional beam modifiers (e.g., wedges and/or compensating filters) are used.
3D-CRT

1. Radiation intensity is uniform within each beam

2. Modulation conferred only by Beam modifiers and shapers
3D conformal radiation therapy
Full 3D CT dataset, ICRU 50,62 definition of target and OAR volumes
3 DCRT – Head & Neck
Intensity modulated radiotherapy (IMRT)

IMRT is an advanced form of 3D CRT
IMRT refers to a radiation therapy technique in which
 nonuniform fluence is delivered to the patient from any given position of the treatment beam

using computer-aided optimization to attain certain specified dosimetric and clinical objectives.
Transition from 3DCRT to IMRT
IMRT RATIONALE

More conformal than 3D CRT

A sharp fall off PTV boundary

Reduction of normal tissue dose

To create concave isodose surfaces or low-dose areas surrounded by high dose.

Lower rate of complication-lower cost of patient care following treatment

Large fields and boosts can be integrated in single treatment plan

Radiobiologic advantage
Divides each treatment field into multiple segments up to (500/angle)

Allows dose escalation to most aggressive tumor cells; best protection of healthy tissue

Modulates radiation intensity; gives distinct dose to each segment

Uses 9+ beam angles, thousands of segments

Improves precision/accuracy

Requires inverse treatment planning software to calculate dose distribution
LIMITATIONS OF IMRT

Many dose distributions physically not achievable

Interfraction variation

Positioning

Displacement and distortion of internal anatomy

Intrafraction motion

Changes of physical and radiobiologic characteristic of tumor and normal tissue
IMRT-Full 3D CT dataset; ICRU 50,62 definition of target and OAR volumes; co-registration of PET and CT images
IMRT – Head & Neck
IMRT DELIVERY

• Having calculated the fluence distributions or fluence maps for each field angle, one now needs to have a means of delivering those fluence maps.

• Methods to deliver an IMRT treatment are:
 – Compensator based IMRT
 – Multileaf collimator (MLC) based
 • Static or step & shoot mode
 • Dynamic mode
 – Intensity modulated arc therapy (IMAT)
 – Tomotherapy
COMPENSATOR BASED IMRT

- compensators are used to modulate intensity.
- compensators must be constructed for each gantry position employed and then placed in the beam for each treatment.
- Adv. of physical attenuators are
 - Highest MU efficiency
 - Devoid of problems such as
 - leaf positioning accuracy,
 - interleaf leakage and
 - intraleaf transmission,
 - rounded leaf, and
 - tongue-and-groove effect that are intrinsic to MLC systems.
- Disadv of physical attenuators
 - issues related to material choice, machining accuracy, and placement accuracy.
 - Labour intensive as each field has unique intensity map & requires separate compensator.
STEP & SHOOT IMRT

• In static or step & shoot mode the intensity modulated fields are delivered with a sequence of small segments or subfields, each subfield with a uniform intensity.
• The beam is only turned on when the MLC leaves are stationary in each of the prescribed subfield positions.
• Adv. of SMLC
 – Simple concept resembles conventional treatment
 – Easy to plan, deliver & to verify
 – an interrupted treatment is easy to resume
 – fewer MUs in comparison to DMLC
 – less demanding in terms of QA
• Disadv. of SMLC
 – Slow dose delivery (5 min/field)
 – Hard on MLC hardware
DYNAMIC MODE

• In the DMLC or sliding window mode, the leaves of MLC are moving during irradiation i.e. each pair of opposing leaf sweeps across target volume under computer control.

• Adv. Of DMLC
 – Better dose homogeneity for target volumes
 – Shorter treatment time for complex IM beams

• Disadv of DMLC
 – More demanding in terms of QA
 • leaf position (gap), leaf speed need to be checked
 – Beam remains on throughout – leakage radiation increased
 – Total MU required is more than that for SMLC
 • increased leakage dose
WORKFLOW OF CONFORMAL RT

1. Patient positioning and Immobilization
2. Volumetric Data acquisition
3. Image Transfer to the TPS
4. Treatment QA
5. Treatment Delivery
6. Dose distribution Analysis
7. Forward Planning
8. Inverse Planning
9. 3D Model generation
10. Target Volume Delineation
SET UP & POSITIONING

• Important component of conformal RT

• Position
 – Should be comfortable & Reproducible
 – Should be suitable for beam entry, with minimum accessories in beam path

• For this purpose positioning devices may be used

• *Positioning devices* are ancillary devices used to help maintain the patient in a non-standard treatment position.
IMMOBILIZATION

• Patient is immobilized using individualized casts or moulds.
• An immobilization device is any device that helps to establish and maintain the patient in a fixed, well-defined position from treatment to treatment over a course of radiotherapy—reproduce the treatment everyday.
Image Acquition for Target and treatment verification

- It provides foundation for treatment planning
- Usually more than one imaging modalities are required for better delineation of target volume

- Images are acquired for:
 - Treatment planning
 - Image guidance and/or treatment verification
 - Follow-up studies (during & after treatment)
IMAGING MODALITIES

• No single imaging modality produces all the information, needed for the accurate identification and delineation of the target volume and critical organs.

• Various imaging modalities used are:
 – CT
 – MRI
 – PET-CT
High Tech Diagnostic Machines

CT Simulator

PET Scan

MRI
CT IMAGING

• Advantages of CT
 – Gives quantitative data in form of CT no. (electron density) to account for tissue heterogeneities while computing dose distribution.
 – Gives detailed information of bony structures
 – Potential for rapid scanning
 – 4-D imaging can be done.
 – Widely available; (relatively) inexpensive
MRI IMAGING

• Advantages of MRI
 – No radiation dose to patient
 – Unparalleled soft tissue delineation
 – Scans directly in axial, sagittal, coronal or oblique planes
 – Vascular imaging with contrast agents
PET/CT

• Recently introduced PET/CT machines, integrating PET & CT technologies, enables the collection of both anatomical & biological information simultaneously

• ADV. of PET/CT
 – Earlier diagnosis of tumor
 – Precise localization
 – Accurate staging
 – Precise treatment
 – Monitoring of response to treatment
CT SIMULATOR

- Images are acquired on a dedicated CT machine called CT simulator with following features
 - A large bore (75-85cm) to accommodate various treatment positions along with treatment accessories.
 - A flat couch insert to simulate treatment machine couch.
 - A laser system consisting of
 - Inner laser
 - External moving laser to position patients for imaging & for marking
 - A graphic work station
IMAGE ACQUISITION

• CT is done with pt in the treatment position with immobilization device if used.
• Radio opaque fiducial are placed.
• These fiducial assist in any coordinate transformation needed as a result of 3D planning and eventual plan implementation.
• A topogram is generated to insure that patient alignment is correct & then using localizer, area to be scanned is selected.
• The FOV is selected to permit visualization of the external contour, which is required for accurate dose calculations.
• Using site dependent protocols, images are acquired.
• The planning CT data set is transferred to a 3D-TPS or workstation via a computer network.
IMAGE REGISTRATION

- registration allows use of complementary features of different scan types.
- Employs a unique algorithm that allows full voxel to voxel intensity match, Image Fusion automatically correlates thousands of points from two image sets, providing true volumetric fusion of anatomical data sets.
- This requires calculation of 3D transformation that relates coordinates of a particular imaging study to planning CT coordinates.
- Various registration techniques include
 - Point-to-point fitting,
 - Line or curve matching
 - Surface or topography matching
 - Volume matching
MRI IMAGE

CT IMAGE

MRI IMAGE

POINT TO POINT MATCHING

IMAGE FUSION

CONTOURING ON BLENDED IMAGE
VOLUME DEFINITION

• Volume definition is prerequisite for 3-D treatment planning.

• To aid in the treatment planning process & provide a basis for comparison of treatment outcomes.

• ICRU reports 50 & 62 define & describe target & critical structure volumes.
Defining Target Volumes and OAR
Target volumes

- **GTV** = Gross Tumour Volume
 = Macroscopic tumour

- **CTV** = Clinical Target Volume
 = Microscopic tumour

- **PTV** = Planning target Volume

Advice: Always use the ICRU reports to specify and record dose and volume

Baumert et al. IJROBP 2006 Sep 1;66(1):187-94
ICRU 83 (2010)

As introduced in ICRU Reports 50, 62, 71, and 78 (ICRU, 1993; 1999; 2004; 2007)

• Gross tumor volume or **GTV**
• Clinical target volume or **CTV**
• Planning target volume or **PTV**
• Organ at risk or **OAR**
• Planning organ-at-risk volume or **PRV**
• Internal target volume or **ITV**
• Treated volume or **TV**
• Remaining volume at risk or **RVR**
ICRU 50/62/83

- Gross tumor volume (GTV): Tumor visible on (CT, MRI, PET, clinical etc.)
Clinical Target Volume

Is a tissue volume that contains a demonstrable GTV and/or subclinical malignant disease that must be eliminated.

This volume must be treated adequately in order to achieve the aim of radical therapy.
• CTV HR
• CTV IR
• CTV LR
A margin must be added to the CTV to compensate for expected physiologic movements and variations in size, shape and position of the CTV during therapy. Includes the CTV and an “Internal Margin”
PTV = CTV + patient movements, set-up and beam inaccuracies
Treasted Volume

Is the tissue volume that (according to the approved treatment plan) is planned to receive at least a dose selected and specified by the radiation oncology team as being appropriate to achieve the purpose of treatment e.g. tumour eradication or palliation, within the bound of acceptable complications.
Organs At Risk

- **Organ at risk (OAR):** Organ whose radiation sensitivity is such that the dose received by during treatment may be significant compared to its tolerance.

- **OARs may significantly influence treatment planning and/or prescribed dose.**
Irradiated Volume

Is the tissue volume that receives a dose that is considered significant in relation to normal tissue tolerance.
Remaining Volume at Risk

The RVR is defined by the difference between the volume enclosed by the external contour of the patient and that of the CTVs and OARs on the slices that have been imaged.
TREATMENT PLANNING SYSTEM

• TPS provides tools for
 – Image registration
 – Image segmentation or contouring
 – Virtual Simulation
 – Dose calculations
 – Plan Evaluation
 – Data Storage and transmission to console
 – Treatment verification
Virtual Simulation Beam Eye View-BEV

- In BEV observer’s viewing point is at the source of radiation looking out along axis of radiation beam.
 - Demonstrates geometric coverage of target volume by the beam
 - Shielding & MLCs are designed on BEV
 - Useful in identifying best gantry, collimator, and couch angles to irradiate target & avoid adjacent normal structures by interactively moving patient and treatment beam.
Room Eye View-REV

- The REV display provides a viewing point simulating any arbitrary location within the treatment room.

- The REV helps
 - To better appreciate overall treatment technique geometry and placement of the isocenter
PLANNING

• For planning, the 3D TPS must have the capability to simulate each of the treatment machine motion functions, including

 – Gantry angle,
 – Collimator length, width & angle,
 – MLC leaf settings,
 – Couch latitude, longitude, height & angle.
FORWARD PLANNING

- For 3D CRT forward planning is used.
- Beam arrangement is selected based on clinical experience.
- Using BEV, beam aperture is designed
- Dose is prescribed.
- 3D dose distribution is calculated.
- Then plan is evaluated.
- Plan is modified based on dose distribution evaluation, using various combinations of
 - Beam, collimator & couch angle,
 - Beam weights &
 - Beam modifying devices (wedges, compensators) to get desired dose distribution.
IMRT PLANNING

• IMRT planning is an inverse planning.
• It is so called because this approach starts with desired result (a uniform target dose) & works backward toward incident beam intensities.
• After contouring, treatment fields & their orientation (beam angle) around patient is selected.
• Next step is to select the parameters used to drive the optimization algorithm to a particular solution.
• Optimization refers to mathematical technique of
 – finding the best physical and technically possible treatment plan
 – to fulfill specified physical and clinical criteria,
 – under certain constraints
 – using sophisticated computer algorithm
INVERSE PLANNING

1. Dose distribution specified
2. Intensity map created
3. Beam Fluence modulated to recreate intensity map
• Dose-volume constraints for the target and normal tissues are entered into the optimization program of TPS
 – Maximum and minimum target doses
 – Maximum normal tissues doses
 – Priority scores for target and normal tissues
• The dose prescription for IMRT is more structured and complex than single-valued prescription used in 3-D CRT & conventional RT
• Ideally some dose value is prescribed to every voxel.
OPTIMIZATION

- Refers to the technique of finding the best physical and technically possible treatment plan to fulfill the specified physical and clinical criteria.

- A mathematical technique that aims to maximize (or minimize) a score under certain constraints.

- It is one of the most commonly used techniques for inverse planning.
• During the optimization process, each beam is divided into small “beamlets”
• Intensity of each is varied until the optimal dose distribution is derived

• We can Optimize following parameters
 – Intensity maps
 – Number of intensity levels
 – Beam angles
 – Number of beams
 – Beam Energy
- **Types:**
 - Physical Optimization Criteria: Based on physical dose coverage
 - Biological Optimization Criteria: Based on TCP and NTCP calculation
 - A total objective function (score) is then derived from these criteria.
 - Priorities are defined to tell the algorithm the relative importance of the different planning objectives (penalties)
 - The algorithm attempts to maximize the score based on the criteria and penalties.
Planning Window
PLAN EVALUATION

• The following tools are used in the evaluation of the planned dose distribution:
 – 2-D display
 • Isodose lines
 • Color wash
 • DVHs (Dose volume histograms)
 – Dose distribution statistics
2D EVALUATION

- Isodose lines superimposed on CT images
- Color wash - Spectrum of colors superimposed on the anatomic information represented by modulation of intensity
 - Gives quick overview of dose distribution
 - Easy to assess overdosage in normal tissue that are not contoured.
 - To assess dose heterogeneity inside PTV
- Slice by slice evaluation of dose distribution can be done.
DOSE VOLUME HISTOGRAM - DVH

- DVHs summarize the information contained in the 3-D dose distribution & quantitatively evaluates treatment plans.
- DVHs are usually displayed in the form of ‘percent volume of total volume’ against dose.
- The DVH may be represented in two forms:
 – Cumulative integral DVH
 – Differential DVH.
CUMULATIVE DVH

• It is plot of volume of a given structure receiving a certain dose.

• Any point on the cumulative DVH curve shows the volume of a given structure that receives the indicated dose or higher.

• It start at 100% of the volume for zero dose, since all of the volume receives at least more than zero Gy.
DIFFERENTIAL DVH

- The direct or differential DVH is a plot of volume receiving a dose within a specified dose interval (or dose bin) as a function of dose.
- It shows extent of dose variation within a given structure.
- The ideal DVH for a target volume would be a single column indicating that 100% of volume receives prescribed dose.
- For a critical structure, the DVH may contain several peaks indicating that different parts of the organ receive different doses.
3-D DOSE CLOUD

- Map isodoses in three dimensions and overlay the resulting isosurface on a 3-D display with surface renderings of target & other contoured organs.
Dose statistics

- It provides quantitative information on the volume of the target or critical structure and on the dose received by that volume.
- These include:
 - The minimum dose to the volume
 - The maximum dose to the volume
 - The mean dose to the volume
 - Modal dose
- Useful in dose reporting.
PLAN EVALUATION

• The planned dose distribution approved by the radiation oncologist is one in which
 – a uniform dose is delivered to the target volume (e.g., +7% and –5% of prescribed dose)
 – with doses to critical structures held below some tolerance level specified by the radiation oncologist

• Acceptable dose distribution is one that differs from desired dose distribution
 – within preset limits of dose and
 – only in regions where desired dose distribution can’t be physically achieved.
PLAN IMPLEMENTATION

• Once the treatment plan has been evaluated & approved, documentation for plan implementation must be generated.

• It includes
 – beam parameter settings transferred to the treatment machine’s record and verify system,
 – MLC parameters communicated to computer system that controls MLC system of the treatment machine,
 – DRR generation & printing or transfer to an image database.
IMRT PLAN VERIFICATION

• The goal is to verify that correct dose & dose distribution will be delivered to the patient.

• One needs to check that
 – the plan has been properly computed
 – leaf sequence files & treatment parameters charted and/or stored in the R/V server are correct &
 – plan will be executable.

• Before first treatment, verification is done to check
 – MU (or absolute dose to a point)
 – MLC leaf sequences or fluence maps
 – Dose distribution
IMRT-QUALITY ASSURANCE

1/ Verify Leaf Positions

2/ Record and Verify System

3/ show leaf positions for each segment

4/ Portal Imaging

5/ Output tolerance tighter

6/ isocentre, mechanical tolerance tighter (smaller target)

7/ Immobilization

8/ Dose accuracy
IMAGE GUIDED RADIOTHERAPY
Need for Adaptive Radiotherapy
Image guidance will be an extremely important vision aid in delivering customised treatment according to each patient’s need.
Factors that contribute to positional or geometric uncertainty in target and nontarget organs

- Errors in target delineation and localization
- Interfraction patient setup errors and organ motion
- Intrafraction motion such as patient movement
- Respiratory and cardiac motion, and peristalsis
Stereotaxy

• Stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) have an established but evolving role in the management of malignant and benign conditions.

• They have altered the way clinicians think about fractionation, and therefore they rank among the most important advances in radiation oncology.
• Ideal image-guided radiotherapy (IGRT) system should have three essential elements:

 – Three-dimensional (3-D) and, if possible, motion (four dimensional (4-D)) assessment of the target volume

 – Efficient comparison of the image data with reference data

 – Efficacious and fast process for clinically meaningful intervention (preferably fully automated).
ASTRO Definition

• Stereotactic body radiation therapy (SBRT) is an external beam radiation therapy method that very precisely delivers a high dose of radiation to an extracranial target. SBRT is typically a complete course of therapy delivered in 1 to 5 sessions (fractions)
• A high degree of dose conformity is a hallmark of SRS
• Accuracy of beam delivery is crucial
• Involves:
 Imaging, target localization, immobilization and treatment setup
<table>
<thead>
<tr>
<th></th>
<th>Radiosurgery</th>
<th>Radiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Dose Per Fraction</td>
<td>High dose (~ 6 to 25 Gy per fraction)</td>
<td>Low dose (~ 2 Gy per fraction)</td>
</tr>
<tr>
<td>Typical # of Fractions</td>
<td>1 – 5 fractions</td>
<td>30 – 45 fractions</td>
</tr>
<tr>
<td>Typical # of Unique Beams Per Fraction</td>
<td>150 – 200</td>
<td>5 – 10</td>
</tr>
<tr>
<td>Typical Targeting Accuracy</td>
<td>< 1 millimeter</td>
<td>3 – 20 millimeters</td>
</tr>
<tr>
<td>Clinical Intent</td>
<td>Tumor ablation</td>
<td>Cumulative dose tumor control</td>
</tr>
</tbody>
</table>
Historical Landmarks in Radiosurgery

1951-1980

Refining radiation sources, and techniques for radiosurgery

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Location</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>Leksell</td>
<td>Stockholm (Karolinska)</td>
<td>Invention of “Stereotactic Radiosurgery” using rotating orthovoltage unit</td>
</tr>
<tr>
<td>1954</td>
<td>Lawrence</td>
<td>Berkeley (Lawrence/Donner Labs)</td>
<td>Use of heavy particle treatment for pituitary for cancer pain</td>
</tr>
<tr>
<td>1962</td>
<td>Kjellberg</td>
<td>Boston (Harvard Cyclotron)</td>
<td>Use of proton beam for intracranial radiosurgery</td>
</tr>
<tr>
<td>1967</td>
<td>Leksell</td>
<td>Stockholm</td>
<td>Invention of Gammaknife using cobalt-60 sources</td>
</tr>
<tr>
<td>1970</td>
<td>Steiner</td>
<td>Stockholm</td>
<td>Use of Gammaknife for AVM’s</td>
</tr>
<tr>
<td>1980</td>
<td>Fabrikant</td>
<td>Berkeley (Donner Labs)</td>
<td>Use of Helium ions for AVM’s</td>
</tr>
</tbody>
</table>
Frames, Frames and more Frames

[Images of various frames and tools related to stereotactic procedures]
Stereotactactic Body Fix
Historical Landmarks in Radiosurgery 1994 - 2009

Towards improved conformity, image-guidance, frameless radiosurgery, and SBRT

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Location</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>Adler</td>
<td>Stanford</td>
<td>First clinical use of prototype of Cyberknife</td>
</tr>
<tr>
<td>1995</td>
<td>Hamilton Lulu</td>
<td>Arizona</td>
<td>First report of SBRT case in North America</td>
</tr>
<tr>
<td>2000</td>
<td>Murphy</td>
<td>Stanford</td>
<td>Introduces image-guided radiotherapy</td>
</tr>
<tr>
<td>2003</td>
<td>Le/Whyte Timmerman</td>
<td>Stanford</td>
<td>Lung tumor SBRT</td>
</tr>
<tr>
<td>2004</td>
<td>Fuss Salter</td>
<td>San Antonio</td>
<td>SBRT with tomotherapy</td>
</tr>
</tbody>
</table>
SRS and SBRT Systems

- Linac System
- Cyberknife
- Vero systems
Types of Photon Radiosurgery Planning

- Circular Arc
- Sphere Packing
- Conformal Shaped Beams
- Dynamic Shaped Arcs
- Intensity Modulated SRS/SRT
- Volumetric Intensity Modulated Arcs
- Tomotherapy
- Non-isocentric dose painting
Quality Assurance

• Treatment QA and routine QA
• Treatment QA:
 Frame accuracy, imaging data transfer, frame alignment with gantry and couch, congruence of target point with radiation isocenter
• Routine QA:
 Hardware/ Software
 Linac based: AAPM report 142 and 54
Target simulator and the floor stand are independently set to the patient’s target coordinates. If everything is aligned and set correctly, the ball bearing will remain in the center of the radiation beam regardless of the angle of the gantry /turntables.
SBRT – Liver and Diaphragm
SBRT - Lung
THANK YOU