Immobilization and patient positioning

Head, Dept of Medical Physics Tata Memorial Hospital

PRECISION RADIOTHERAPY

- State of Art Equipment with MLC's and microMLC's
- Complex treatment techniques –3DCRT,IMRT/IGRT, SRT/SRS
- Extensive use of Imaging Modalities CT, MR, PET-CT
- Delineation of Volumes protocols
- Networking environment
- Advanced Planning Systems- 3D, MC Algorithms
- Image guidance with KV or MV cone beam CT
- Electronic Portal Imaging (EPID) for verification
- Best possible Immobilization

Clinical Target Volumes

Prescribing, Recording, and Reporting Photon Beam Therapy

ICBU REPORT 50

- GTV Gross Target Volume includes tumor that can be seen in treatment planning images (typically CT, MR or PET).
- CTV Clinical Target Volume includes the GTV plus regional lymph nodes and tissue adjacent to the GTV that may contain microscopic tumor cells.
 The CTV is what the physician wants to treat.
- PTV Planning Target Volume includes CTV plus a margin of healthy tissue to account for inter- and intrafraction organ motion and setup. In order to treat the CTV, the planner must design a treatment plan for the PTV.

ICRU50

Margins in high precision RT

- Geometric margin (PTV) depends upon: set up errors and organ motion.
- PTV = Internal Target volume (ITV) + Set up margin (SM)
- Internal target volume (ITV): CTV + Internal motion
- Set up margin (SM): margin for set up uncertainties
- ITV: reduced by organ motion tracking
- SM: reduced by more accurate immobilization

CONFORMING THE PTV WITH MLC

Need of accurate Immobilization

PITFALLS

As we move from standard treatment to conformal treatment

- Due to more accurate localization with above modalities, the field sizes (margins) have reduced considerably
- Further, due to MLC's irregular shaped conformation became easily possible
- Volume delineation protocols defined different regions within the target and a differential dose to these is possible

This has made the Immobilization during day to day delivery very much important

Immobilization

Proper immobilization: basic but very important step for high precision RT

Types

Plaster of Paris cast

- Thermoplastic shells
- Perspex shell
- Acrylic shell
- Stereotactic frame
- Vacuum bags

POSITIONING: Simple in-house devices

- Inform patient about immobilization
 Comfortable positioning
- 1. Knee Rest- comfortable, relaxes back against flat couch
- 2. Ankle rest-change in foot-change/rotation bony reference points
- 3. Belly board- takes small bowel away from radiation field by gravity
- 4. Head rest-pillow:- relaxes strain on neck, comfortable

POSITIONING

- Intention
 - comfortable
 - reproducible
- treatment delivered with optimal sparing of normal tissues
- Supine/prone (site specific)
- Head rest/knee rest /Breast board/rubber traction and other accessories (institution protocol)
- Arms above/below
- Documented in patient file
- Generally finalized in simulator/CT simulator

SUPINE

SUPINE POSITION

- Commonest position
- Easier, comfortable, easily reproducible
- Hands on chest, head on pillow, legs straight
- FROG leg position:- groin skin folds, low 1/3 vaginal tumours

Possible disadvantages of SUPINE POSTION

- Obese patient:-skin marks on ant skinshift by several centimeters-poor reproducibility!
- skin folds –more chances of skin reactions
- straps, tapes can be used to decrease skin folds- variation/ slipping intra & interfraction!
- This causes variation in thickness-non uniform dose

POSITIONING LATERAL AND PRONE

LATERAL – MID EAR

PRONE - MEDULOBLASTOMA

PRONE POSITIONING RECTUM

Principle: gravitation pulls small bowel into hollow cavity - bowel sparing Pros and cons Good abdominal Τ. muscle tone-less effective Thin patients benefit equally as fat patients II. In obese patients it's the skin fold ,fat –falls into hollow not small III. bowel! Compression roll under IV. pelvis

BREAST POSITIONING

PERSPEX BREAST BOARD THERMOCOL BOARD LINAC BREAST BOARD

Plaster of PARIS Moulds

- (CaSo4)2.H2O
- POP Bandages as per size (6" wide)
- Vaseline the surface
- Use rubber Traction as appropriate
- Wrapped and positioned over face as per marking
- Use Aluminum wire at border/junction
- Moulds by itself when dried
- Simple, inexpensive, preliminary form of immobilization

POP strips & instruments for preparation of POP mould

PERSPEX & ACRYLIC MASKS

- POP negative mask
- Dental stone cast or bust is made from this
- Mix (paste) of acrylic powder and cold cure liquid is spread uniformly on the cast
- Acrylic shell thus formed is removed after appropriate time
- Alternatively the bust is use to form Perspex moulds with sheets of 2-3 mm using a vacuum forming machine
- Both these techniques are time consuming and are now almost replaced by thermoplastic

Completed acrylic mould

THERMOPLASTIC MASKS

Thermoplastic sheets in various sizes
& suitable for various sites
The water bath maintaining ~70° C
The sheets get malleable at this Temp.
Wrapped over area of interest carefully
Appropriate markers put during simulation

Thermoplastic mask and neck-rests

Supports for immobilization of neck

Natural position preferred in head and neck cancer

Set up error varies with different head support

STEREOTACTIC IMMOBILIZATION

SPECIAL SRT THERMOPLASTIC MASK

SRS POSITIONING BOX

VACCUM BODY BAG AND STEREOTACTIC BODY FRAME

Vacuum cushion for patient immobilization

Contains pre-expanded polystyrene micro-spheres

Upon vacuum they pulls together tightly and bag/cushion becomes rigid, retaining shape of body

The body frame has fiducial along both sides for accurate planning & set up

It also has diaphragm control to minimize Respiratory movement

COMMERTIAL ADVANCED SOLUTIONS

INDEXED COUCH AND BASEPLATE

ORFIT LUNG & BREAST BOARD

ORFIT BELLY 7 PELVIS BOARD

PATIENT TRANSFER SYSTEM -CIVCO

Body Pro-Lok Patient Transfer System

CIVCO

options

CIVCO SBRT Motion Management Systems

Pros & Cons of Using Overlays

PROS:

- Standardisation allows easy matching between all couchtops with simple connection with standard Lok-Bars
- Allows for greater lateral offset if needed.

CONS:

- Adds attenuation
- Requires more dose calculations
- Can be unwieldly to move between rooms
 Requires more

storage space.

SAXONS

In-house

Breast Board

Belly Board

Arm Rest

Knee Rest

Perspex Vs Thermoplastic mask

Mask	Ante	Anteroposteri or SD %		nio-caudal	 Randomized study Four arms: 		
type		or					
	SD	%	SD	%			
	(m	deviatio	(m	deviatio	1) Plastic orfit cut		
	m)	ns	m)	ns	2) Plastic orfit no cut		
		> 4mm		> 4 mm	3) Thermoplastic orfit cut		
Plastic	2.2	5.1	2.4	10	4) Thermoplastic orfit no cut		
(cut out)					 43 pts of ENT tumours 		
Plastic	1.7	3.1	1.8	2.6			
(intact)					 Error estimated with 2D EPID 		
Orfit (cut	2.2	9.2	2.3	9.4			
out)							
Orfit	1.9	3.3	1.8	2.7	Weltens IJROBP 1995		
(intact)				No difference i	n set up errors/		

3 clamp versus 4 clamp mask

Randomized study.

• n= 241 (3 clamp:120; 4 clamp: 121)

• Port films compared manually

	3 clamp vs 4 clamp			
	Absolute difference (mm)	<i>P-value</i>		
Field shift (1st Week)	-6.0	0.22		
Field shift (4 th Week)	-1.8	0.69		
Any field shift	-4.4	0.45		
Field shift related to mask	-0.2	0.97		

Smaller mask : No compromise in setup reproducibility Shoulder immobilization and movements: an issue

Sharp L et al; IJROBP

Errors with different fixation devices

Randomized comparison of set up error between 3, 4 & 5 clamp mask (N=30)Setup uncertainties : 2-5 mm in AP, CC or ML directions

3 Clamp		4 Clai	mp	5 Clamp		
	Systematic 3D error mean (SD)			Random 3D error (mm)		
-	Head	Neck	Shoulder	He ad	Neck	Should er
3 Clamp mask	3.1 (1.0)	2.3 (0.8)	2.5 (1.2)	0.7	0.9	2.3
4 clamp mask	2.4 (0.8)	1.7 (1.0)	3.7 (1.1)	0.9	1.0	0.8
5 clamp mask	2.4 (0.9)	2.2 (1.0)	2.8 (1.1)	1.0	1.0	1.2

Organ Motion

Organ motion often is categorized as follows:

 "Interfraction" motion occurs between fractions and primarily is related to changes in patient setup daily.

 "Intrafraction" motion occurs during fractions and primarily is related to respiration, cardiac motion, and the digestive system.

Varian Clinac[®] with On-Board Imager™

Inter-fraction / Intra-fraction movement

Intra-fraction error

Deviation observed within a single fraction of fractionated therapy.

Caused by random / periodic patient movements (eg. Breathing).

Inter-observer variation

Due to manual matching of a reference image and a portal

image can also introduce substantial measurement errors.

How To Limit Motion?

- Simple techniques
- 1. Patient immobilization (molds, casts, etc)
- 2. Breath control
 - (Breathing Training)
- 3. Abdominal compression.
- 4. Beam gating
 - (observation of chest wall motions)
- Complex techniques
- 1. Deep Inspiration Breath Hold
- 2. Active Breathing Control (ABC)
- 3. Real Time Tumor Tracking
- 4. IGRT (respiratory gating and real time position management)

Organ Motion Control

Deep Inspiration Breath Hold

Active Breathing Control

Real Time Tumor Tracking

Abdominal Compression

Respiratory Gating

Electronic Portal Imaging Device (EPID)

1980s.... Norman Baily

- Commercial EPIDs in 1990s
- Types of EPID
- Liquid ionization chamber based
- Camera based
- Amorphous silicon based

Advantages of EPIDs

- Images available immediately
- Images can be used for online correction
- Digital images: can be enhanced by changing contrast and brightness
 - Used for matching with DRR image.

KV CT: On-Board Imager (OBI)

Treat what you have planned providing the ability to deliver more accurate treatment with confidence and repeatability

High quality Imaging. Low dose to patient (< 4cGy) Choice of imaging modalities Easy-to-use user interface with automated comparison tools Automated extension and retraction of OBI

Matching with soft tissue delineation

MV CT: Tomotherapy

MV CT based contour matching

Mould Room Techniques

Immobilization Masks
Conformal Blocks
Electron Cutouts
Tissue Compensators
Oral Prosthesis
Brachytherapy Moulds

Styrofoam cutter and customized blocks

Low melting alloy, *Q* - 9.3 gm/cc Ostalloy- Bi-50%, Pb-25%, Cd- 13%, Tin-12%

Conformal block: size depends on distance

Milling machine with milled block

• one can export just the fluence to MM's computer & it can also convert it into compensator thickness file

Aluminum blocks Tissue Compensator

BITE BLOCK

HDR Brachytherapy Surface Moulds

Making the mould

Making the mould

IMPLANT ACCESSORIES

CROSSING TUBES

BREAST TEMPLATES

Preparation of Bead tubes

- Commercially available beads have only a single passage
- For cross beads, we need a passage perpendicular to the original passage
- A Third hole is made with a bur attached with a heavy duty dental motor

Trolley arrangement

CONCLUSION

- With increasing trend of conformal treatments the importance of immobilization has multiplied many folds
- Appropriate positioning is pre-requisite for proper immobilization
- Simple in-house devices can be designed for positioning
- Thermoplastic sheets are most common and effective method of immobilization
- It is necessary to choose carefully various H & N rests based on institutional protocols
- Considering high costs of sophisticated immobilization devices it is prudent to include detail immobilization requirement along with procurement of treatment units\
- In brachytherapy there is good scope of mould room techniques to prepare HDR moulds and other accessories for implants

IMMOBILIZATION - BE DEFINITELY BETTER THAN GULIVER'S !

