Interesting faces of cancer treatment

Some overwhelming developments in Breast Cancer Chemotherapy
Natural history - if untreated

- Average survival from 1st symptom: 44 months
- Median survival: 2.5 years
- 5 year survival: 22%
- 10 year survival: 5%
- Above data on the basis of tumor doubling time
- Biology of breast cancer: Aggressive or slowly progressive
Standard treatments used are-

• Surgery
 – Breast-conserving surgery (BCT)
 – Mastectomy (MRM)

• Radiation therapy
• Chemotherapy
• Hormone therapy
• Targeted therapy
Invasive Breast Cancer Subsets defined by IHC

10% to 15%
25% to 30%
60% to 70%

HR +
HER2 +
Triple Negative

Node negative

Traditional approach

Node positive

New Approach

HER-2 +

ER-, HER-2 –
Basal-like cancers

ER++
Luminal A

ER+
Luminal B

11/8/2017 ICRO Guwahati
Prognostic and Predictive Factors

- Prognostic factors
 - Predict natural history
 - Nodal status
 - Tumor size
 - LVI
 - Grade
 - HER2 status*
 - ER/PgR*
 - Age
 - Recurrence score*

- Predictive factors
 - Predict response to therapy
 - ER/PgR*
 - HER2*
 - Recurrence score*

*Both prognostic and predictive

LVI = lymphovascular invasion; ER = estrogen receptor; PgR = progesterone receptor.
Rugo, ASCO, 2005, Abstract 3009. Adapted from slide presentation.
How to predict risk of recurrence & death

- **Low Risk**
 - T ≤ 2 cm
 - G1
 - Node –
 - HER2 –
 - LVI absent

- **Intermediate Risk**
 - AGE < 35 years
 - G2-3
 - T > 2 cm
 - Node –, HER2+ or LVI present

- **High Risk**
 - Node + (1-3) and HER2 -
 - Node + (1-3) and HER2 +
 - Node + ≥ 4

T = size

G = grade

LVI = lympho-vascular invasion

11/8/2017 ICRO Guwahati
Oncotype DX 21 Gene Recurrence Score (RS) Assay

16 Cancer and 5 Reference Genes From 3 Studies

\[
RS = + 0.47 \times \text{HER2 Group Score} \\
- 0.34 \times \text{ER Group Score} \\
+ 1.04 \times \text{Proliferation Group Score} \\
+ 0.10 \times \text{Invasion Group Score} \\
+ 0.05 \times \text{CD68} \\
- 0.08 \times \text{GSTM1} \\
- 0.07 \times \text{BAG1}
\]

PROLIFERATION
- Ki-67
- STK15
- Survivin
- Cyclin B1
- MYBL2

ESTROGEN
- ER
- PR
- Bcl2
- SCUBE2

INVASION
- Stromolysin 3
- Cathepsin L2

HER2
- GRB7
- HER2

REFERENCE
- Beta-actin
- GAPDH
- RPLPO
- GUS
- TFRC

Category	**RS (0 - 100)**
Low risk | RS < 18
Int risk | RS ≥ 18 and < 31
High risk | RS ≥ 31
Chemotherapy in breast cancer

- Adjuvant
- Neo-adjuvant
- Metastatic
Goals Of Breast Cancer Treatment

- Palliation
 - relieve symptoms caused by the tumor

- Neo-adjuvant therapy
 - easy operability / down staging

- Adjuvant therapy
 - micro metastases
Adjuvant chemotherapy

• CMF, first generation, 1970s
 - Cyclophosphamide
 - Methotrexate
 - 5-FU

• Benefit in
 - Older individual with early stage carcinoma
 - Breast
 - Distant recurrence
 - Survival
Adjuvant chemotherapy

- CAF or CEF, 2nd generation, 1980s
 - Cyclophosphamide
 - Adramycin (or Epirubicin)
 - 5-FU

- More toxic than CMF
- CAF better than CMF in high-risk group
 - Axilla LN+
 - LN-, but tumor large or other risk factor
What have we learned?

- Standard regimens are CMF and CAF
- Anthracycline (e.g. Adriamycin) containing regimens are superior to those that lacks it
- High dose therapy did not improve overall survival
 - Increased morbidity and mortality

After 200+ RCTs -

- Combination therapy is superior to single agents
- 4 to 6 months produced optimal results
 - Longer treatment with the same regimen did NOT provide incremental gains
- Hormone receptor-positive patients benefit from sequential chemotherapy plus endocrine therapy
 - Additive therapeutic effect
Third Generations Regimen

Taxanes as Adjuvant Therapy in BC

- Taxane use in stage I-III BC significantly improves disease-free survival and overall survival
 - Recurrence is still a substantial problem
- Emergence of molecular resistance to taxanes:
 - Increases population requiring alternate therapy
 - Decreases efficacy to other chemotherapies by cross-resistance

BC = breast cancer.
Taxane Mechanism of Action (Paclitaxel, Docetaxel)

- Stabilize microtubules and promote polymerization
- Arrest cellular division at G2/M checkpoint, inducing apoptosis
- Reversibly bind β-tubulin subunits

Taxanes

- 1st Trial CALGB 9344: AC + placitaxel(T)
- 3,121 node-positive patients
- Median follow-up of 69 months
 - 5 yr DFS: 70% v 65%, p=0.0023
 - 5 yr OS: 80% v 77%, p=0.0064

Docetaxel (Taxotere) Trial

- BCIRG 001 Trial
 - 1,491 node-positive patients
 - TAC X6 v FAC X6
 - 5 yr outcome
 - DFS: 75% v 68%
 - OS: 87% v 81%
- Increased morbidity
 - Febrile neutropenia 10X control arm
 - Neurotoxicity

Dose-dense Regimen

- Theoretical premise:
 "Full doses of drug, given at the highest possible frequency, will produce the highest degree of cell kill"

- CALGB 9741
 - 2,005 node-positive patients
 - 2 X 2 factorial design
 - $A \rightarrow T \rightarrow C$ every 3 weeks
 - $A \rightarrow T \rightarrow C$ every 2 weeks + G-CSF
 - $AC \rightarrow T$ every 3 weeks
 - $AC \rightarrow T$ every 2 weeks + G-CSF
CALGB 9741

- Median follow-up of 36 months
- Dose dense regimen
 - 4 yr DFS: 82% v 75%
 - Significant OS in favor of dose-dense arm
 - Low rate of neutropenic fever and cardiac toxicity
 - Increased rate of anemia

Overall survival in the paclitaxel adjuvant trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>No.</th>
<th>Follow-up</th>
<th>Regimen</th>
<th>Overall survival</th>
<th>5-year absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGB 9344</td>
<td>3121</td>
<td>69</td>
<td>AC x 4 → T x 4</td>
<td>0.82 (0.71–0.98)</td>
<td>80 (77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSABP B-28</td>
<td>3060</td>
<td>64</td>
<td>AC x 4 → T x 4</td>
<td>0.93 (0.78–1.12)</td>
<td>85 (85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AC x 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **TAC** is a very effective adjuvant regimen for patients with node-positive breast cancer:
 - Significant improvement of DFS and OS over FAC
 - TAC significantly improved DFS irrespective of nodal, menopausal, HER2 and hormonal status
The Generations
(Lineages and Chains of Inference)

CMF → CAF, CEF
CMF → FAC
FE(50)C → FE(100)C
CA*4 → CA*4+P*4 (Q3W)
DAC → FEC*3+D3,
FEC*4+[P*8(Q1W)]?

P = paclitaxel; D = docetaxel; A = doxorubicin; E = epirubicin
§ Exploratory analyses suggest may be less effective in ER+ cases
? Hazard ratios consistent with designation but p values for OS not < 0.05
Targeted therapy in cancer
HER2+ Disease: Major Clinical Advances Over The Past 15+ Years

1998
- Initial Randomized Trial Demonstrating Benefit of Trastuzumab

2002
- Three Large Adjuvant Trials Reported
- Lapatinib Approved

2005
- 2005
- Initial Trials Of T-DM1, Pertuzumab, Neratinib
- 2005
- Three Large Adjuvant Trials Reported

2007
- Phase II Randomized Trial of T-DM1

2008
- Phase III of Pertuzumab

2010
- 2010
- Preoperative Trials of Dual Blockade

2011
- 2010
- Preoperative Trials of Dual Blockade

2012
- 2012
- Pertuzumab Preop Approval

2013
- Neratinib

2015
- 11/8/2017 ICRO Guwahati
Timeline of HER2 Therapy for HER2+ MBC

1980's
- Discovery of erb B2 as an oncogenic driver of breast cancer

1998
- Trastuzumab: 1st line Rx of HER2+ MBC with paclitaxel; monotherapy

2006
- Lapatinib: approved for 2nd line Rx of MBC with capecitabine

2007
- Trastuzumab approved for adjuvant Rx of node+ BC

2008
- Pertuzumab approval for 1st line Rx of MBC with paclitaxel and trastuzumab

2012
- Pertuzumab Approval for neoadjuvant BC

2013
- ado Trastuzumab Emtansine (T-DM1) approval for 2nd line Rx of MBC
The HER2 Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>neu described as a transforming oncogene in rat brain tumor carcinogenesis model</td>
</tr>
</tbody>
</table>
| 1985 | a) *neu* is homologous to the v-erb B viral oncogene
b) “EGFR-like” gene amplified in a human breast cancer cell line – named “HER2” |
| 1986 | HER2 found to have tyrosine kinase activity similar to EGFR |
| 1987 | HER2 amplification correlated with poor OS in human breast cancer |
| 1989 | Discovery of HER3 |
| 1993 | Discovery of HER4 |
| 1998 | FDA approval of trastuzumab |
| 2007 | FDA approval of lapatinib |
| 2012 | FDA approval of pertuzumab |
| 2013 | FDA approval of trastuzumab emtansine (T-DM1) |
HER-2 Positivity in Breast Cancer

- **OVEREXPRESSION**: marked increase in number of HER2 receptors on the cell surface
- **AMPLIFICATION**: increase in number of HER2/neu gene copies in the nucleus

HER2-normal (HER2-) breast epithelium cell (~20,000 receptors) vs. HER2-positive breast cancer cell (up to 1-2 million receptors)
HER2-positive status shortens survival

- Women whose breast cancers are HER2 positive have a shorter overall survival

Median survival

- HER2 positive: 3 years
- HER2 negative: 6–7 years

Slamon DJ et al. Science 1987;235:177–82
Herceptin + chemotherapy
Disease progression at 1 year

Chemotherapy alone

- 91% Free of progression
- 9% Progressive disease

Chemotherapy + Herceptin®

- 72% Free of progression
- 28% Progressive disease

11/8/2017 ICRO Guwahati
Anti-HER2 Antibodies: Mechanism of Action

- Excessive cell proliferation, survival, and angiogenesis
- Potentiation of chemotherapy
- Inhibition of tumor cell proliferation
- Facilitation of immune function

NSABP B-31/N9831 Joint Analysis: Impact of Adding Trastuzumab to AC → Paclitaxel on Disease-Free Survival*

N9831 arm B (sequential trastuzumab after AC→P) not included in joint analysis.

<table>
<thead>
<tr>
<th>Years after randomization</th>
<th>Control 1679 1162 689 374 59 0</th>
<th>Trastuzumab 1672 1217 766 427 74 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>87.1% (133 events)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>85.3%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Surviving disease-free

Trastuzumab

Control

P<0.0001

HR=0.48

Median FU 2.0 y

11/8/2017 ICRO Guwahati
Adjuvant Trastuzumab:
Room to Improve

- Generally well tolerated
- Some patients will still recur
- Intravenous infusion q1-3 wks for one year
- Serious side effect: cardiotoxicity

<table>
<thead>
<tr>
<th>Study</th>
<th>Regimen</th>
<th>Symptomatic CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31/NCCTG</td>
<td>AC→ TH</td>
<td>3.5 – 4.1%</td>
</tr>
<tr>
<td>NCCTG</td>
<td>AC→ T → H</td>
<td>2.5%</td>
</tr>
<tr>
<td>HERA</td>
<td>Chemo → H</td>
<td>0.6%</td>
</tr>
<tr>
<td>BCIRG 006</td>
<td>TCH</td>
<td>0.4%</td>
</tr>
<tr>
<td>FinHER</td>
<td>H → chemo</td>
<td>0%</td>
</tr>
</tbody>
</table>

Piccart-Gephardt, ASCO 2006

11/8/2017 ICRO Guwahati
Early Stage Disease

<table>
<thead>
<tr>
<th>Hormones</th>
<th>Herceptin</th>
<th>Chemo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausal</td>
<td>Postmenopausal</td>
<td>IV</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Tamoxifen</td>
<td>3wkly for 1 year</td>
</tr>
<tr>
<td>Aromatase Inhibitors</td>
<td>Cardiac monitoring</td>
<td>4-6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alopecia / Mucositis / Sepsis</td>
</tr>
</tbody>
</table>

11/8/2017 ICRO Guwahati
ADVANCED DISEASE
- TRASTUZUMAB EMTANSINE (T-DM1) -

11/8/2017 ICRO Guwahati
ADJUVANT THERAPY
- TRASTUZUMAB (Herceptin) -

All patients with HER2-positive tumors ≥ T1c or N+

- Administer concurrently with Taxane, then complete 1 year of treatment
- OUTCOMES → DFS increase of 12% at 3 years; 33% reduction in the risk of death
- Monitor heart function (ECG, ejection fraction)

REGIMEN

- EC (or AC) → Taxane + H → H
- FEC (or FAC) → Taxane + H → H
- Docetaxel + Carboplatin + Trastuzumab (TCH) → H

NSABP trial B-31 + NCCTG trial N9831

BCIRG 006 study

11/8/2017

Romond EH, NEJM 2005

ICRO Guwahati

Slamon D, NEJM 2011
A summary of four adjuvant trials of trastuzumab at time of interim analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Eligibility – all patients HER-2⁺ and had adjuvant chemotherapy</th>
<th>No.</th>
<th>Study design</th>
<th>Median follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP-31</td>
<td>LN-positive</td>
<td>1021</td>
<td>Group 1: AC x 4 → paclitaxel x 4</td>
<td>28 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1022</td>
<td>Group 2: AC x 4 → paclitaxel x 4 plus weekly trastuzumab for 12 months</td>
<td></td>
</tr>
<tr>
<td>N9831</td>
<td>LN-positive and high risk LN-negative</td>
<td>1633</td>
<td>Group A: AC x 4 → weekly paclitaxel x 12</td>
<td>18 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group B: AC x 4 → weekly paclitaxel x 12 plus weekly trastuzumab for 12 months*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group C: AC x 4 → weekly paclitaxel x 12 plus weekly trastuzumab for 12 months</td>
<td></td>
</tr>
<tr>
<td>HERA</td>
<td>LN-positive or LN-negative (tumour >1 cm) and completed adjuvant chemotherapy</td>
<td>1694</td>
<td>Group A: 3 weekly trastuzumab for 24 months*</td>
<td>12 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1694</td>
<td>Group B: 3 weekly trastuzumab for 12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1693</td>
<td>Group C: observation</td>
<td></td>
</tr>
<tr>
<td>BCIRG-006</td>
<td>LN-positive or high-risk node negative disease</td>
<td>1073</td>
<td>Group 1: AC x 4 → docetaxel x 4</td>
<td>23 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1074</td>
<td>Group 2: AC x 4 → docetaxel x 4 plus weekly trastuzumab then 3 weekly for 12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1075</td>
<td>Group 3: docetaxel plus carboplatin x 6 plus weekly trastuzumab then 3 weekly for 12 months</td>
<td></td>
</tr>
</tbody>
</table>
A summary of the endpoints of the adjuvant trials (NSABP B-31 and N9831, and HERA)

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Number of events</th>
<th>HR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>B-31 and N9831*</td>
<td>133</td>
<td>261</td>
<td>0.48 (0.39–0.59)†</td>
</tr>
<tr>
<td>DFS</td>
<td>62</td>
<td>92</td>
<td>0.67 (0.48–0.93)‡</td>
</tr>
<tr>
<td>OS</td>
<td>28</td>
<td>37</td>
<td>–</td>
</tr>
<tr>
<td>HERA</td>
<td>127</td>
<td>220</td>
<td>0.54 (0.43–0.67)</td>
</tr>
<tr>
<td>DFS</td>
<td>29</td>
<td>37</td>
<td>–</td>
</tr>
</tbody>
</table>
Treatment Advances in HER2+ Breast Cancer
In 1995, HER2+ breast cancer was one of the most aggressive types of breast cancer and was very difficult to treat.
Chemotherapy +/- Trastuzumab: Proportion of Patients with Cancer Under Control

- Trast + CT (n = 235)
 - Median TTP = 7.4 mon
- CT alone (n = 234)
 - Median TTP = 4.6 mon

When trastuzumab was first approved based on the results above, few thought it would have such a profound effect on the course of HER2+ breast cancer
Critical Observation: HER2 Addiction

This means that HER2+ breast cancer is dependent on HER2 signaling even when the cancer gets worse after initial treatment with trastuzumab.
Capecitabine +/- Lapatinib

Time to Progression

Lapatinib +
Capecitabine

No. of pts 160 161
Progressed or died* 28% 43%
Median TTP, wk 36.9 19.7

HR 0.51 (0.35-0.74)

\[p=0.0016 \]

Objective Response rate 22% vs 14%

* Censors 4 patients who died due to causes other than breast cancer

11/8/2017
ICRO Guwahati
Progression-Free Survival: Lapatinib vs Lapatinib + Trastuzumab

L N = 145
L+T N = 146

Progressed or Died, n 128 127
Median, wks 8.1 12.0
Hazard ratio (95% CI) 0.73 (0.57, 0.93)
P value 0.008

Cumulative % Alive without Progression

ORR 6.9% vs 11.3%, NS

Significant improvement in overall survival also seen

ICRO Guwahati
HER2+ Disease: Major Clinical Advances Over The Past 15+ Years

1998
- Initial Randomized Trial Demonstrating Benefit of Trastuzumab

2002
- First Preoperative Trials Reported
- Three Large Adjuvant Trials Reported
- Lapatinib Approved

2005
- Initial Trials of T-DM1, Pertuzumab, Neratinib

2007
- Phase II Randomized Trial of T-DM1

2008
- Preoperative Trials of Dual Blockade

2010
- Phase III of Pertuzumab/Pertuzumab Preop Approval

2011
- Phase III of T-DM1 vs Cape/Lap with subsequent approval

2012
- Pertuzumab Preop Approval

2013
- Neratinib

11/8/2017 ICRO Guwahati
Trastuzumab and Pertuzumab Bind to Different Regions on HER2 and Have Synergistic Activity
CLEOPATRA:
Phase III Trial of Docetaxel + Trastuzumab vs Docetaxel + Trastuzumab + Pertuzumab

N=800

HER2-positive MBC (1:1)
(53% no prior chemo, 10% prior trastuzumab)

- End points
 - PFS and OS
 - quality of life
 - biomarker analysis

Docetaxel + trastuzumab + placebo

Docetaxel + trastuzumab + pertuzumab
Improvement with Pertuzumab in Cleoapatre

- Disease control (progression free survival)
 - 6 months

- Overall survival
 - 15 months (biggest benefit ever seen)
CLEOPATRA: Updated Survival Data

15.7 months improvement in median OS in the final analysis
(secondary endpoint)²

Pertuzumab + Trastuzumab + Docetaxel

Placebo + Trastuzumab + Docetaxel

56.5 MONTHS

40.8 MONTHS

0.95% CI:
0.56-0.84
P=0.0002

Swain et al, ESMO, 2014
NEJM 2015

11/8/2017 ICRO Guwahati
Maytansine analogue DM1 (antitubule akin to vincas) conjugated to trastuzumab – similar to gemtuzumab (Myelotarg)

Trastuzumab-DM1 (T-DM1), a HER2 Antibody-Drug Conjugate

- Trastuzumab-DM1 (T-DM1), a HER2 Antibody-Drug Conjugate
- Average number of DM1 molecules/monoclonal antibody = 3.5
- HER2-mediated internalization
- Lysosomal degradation
- Active metabolite cannot cross plasma membrane (no bystander effect)
HER2 Gene Amplification Results in Marked Overexpression of HER2 Proteins (and therefore a great target)

2,000,000 HER2 proteins on cancer cell
EMILIA Study Design

Primary end points: PFS by independent review, OS, and safety

Key secondary end points: PFS by investigator, ORR, duration of response, time to symptom progression

HER2+ (central) LABC or MBC (N=980)
- Prior taxane and trastuzumab
- Progression on metastatic tx or within 6 mos of adjuvant tx

1:1

T-DM1
- 3.6 mg/kg q3w IV

Capecitabine
- 1000 mg/m² orally bid, days 1–14, q3w

Lapatinib
- 1250 mg/day orally qd
Overall Survival

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Cap + Lap</th>
<th>T-DM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>496</td>
<td>495</td>
</tr>
<tr>
<td>2</td>
<td>471</td>
<td>485</td>
</tr>
<tr>
<td>4</td>
<td>453</td>
<td>474</td>
</tr>
<tr>
<td>6</td>
<td>435</td>
<td>457</td>
</tr>
<tr>
<td>8</td>
<td>435</td>
<td>439</td>
</tr>
<tr>
<td>10</td>
<td>403</td>
<td>418</td>
</tr>
<tr>
<td>12</td>
<td>368</td>
<td>349</td>
</tr>
<tr>
<td>14</td>
<td>297</td>
<td>293</td>
</tr>
<tr>
<td>16</td>
<td>240</td>
<td>242</td>
</tr>
<tr>
<td>18</td>
<td>204</td>
<td>197</td>
</tr>
<tr>
<td>20</td>
<td>159</td>
<td>164</td>
</tr>
<tr>
<td>22</td>
<td>133</td>
<td>136</td>
</tr>
<tr>
<td>24</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>26</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>28</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>30</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td>32</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>34</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

No. at risk:
Cap + Lap: 496 471 453 435 403 368 297 240 204 159 133 110 86 63 38 27 17 7 4
T-DM1: 495 485 474 457 439 418 349 293 242 197 164 136 111 86 62 38 28 13 5

Data cut-off July 31, 2012; Unstratified HR=0.70 (P=0.0012).

Median (months) No. of events
Cap + Lap: 25.1 182
T-DM1: 30.9 149

Stratified HR=0.682 (95% CI, 0.55, 0.85); P=0.0006

Efficacy stopping boundary P=0.0037 or HR=0.727

11/8/2017 ICRO Guwahati
Adverse Events

Grade ≥3 AEs With Incidence ≥2%

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Cap + Lap (n=488)</th>
<th>T-DM1 (n=490)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades, %</td>
<td>Grade ≥3, %</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>79.7</td>
<td>20.7</td>
</tr>
<tr>
<td>Hand-foot syndrome</td>
<td>58.0</td>
<td>16.4</td>
</tr>
<tr>
<td>Vomiting</td>
<td>29.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>8.6</td>
<td>20.7</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td>35.1</td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td>39.2</td>
</tr>
<tr>
<td>Mucosal inflammation</td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Increased AST</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Increased ALT</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase.

Verma et al, ESMO 2012
Blackwell, NEJM 2012

11/8/2017 ICRO Guwahati
Treatment Approach For Patient Presenting With HER2+ MBC in 2016

First Line: Taxane + Trastuzumab + Pertuzumab

Second Line: TDM-1

Third, Fourth….Line
Capecitabine + Lap
Capecitabine + Trast
Vinorelbine + Trast
Lapatinib + Trast
Other chemo + Trast
Endocrine Therapy + Trast

(Some patients with ER+/PR+ disease can be treated up front with hormonal therapy +/- anti-HER2 therapy)
Neo-adjuvant therapy

• Refers to the
 - systemic treatment of breast cancer prior to definitive surgical therapy (ie, preoperative therapy).
Neo-adjuvant chemotherapy

- Introduced in the early 1970s as part of an integrated therapeutic approach to treat inoperable locally advanced breast cancer, primary, anterior, induction or Neoadjuvant chemotherapy (NACT) resulted in
 - high responses and sufficient down-staging to allow mastectomy in some patients
 - The small number of pathological complete responders, which was contrary to expectations, is now the prime focus of NACT trials
NACT - Objective

• To improve surgical outcomes in patients with breast cancer for whom a
 - primary surgical approach is technically not feasible and
 - for patients with operable breast cancer who desire breast conservation, but for whom either a mastectomy is required or a partial mastectomy would result in a poor cosmetic outcome
NACT - Objective

• In addition, appropriate for patients with human epidermal growth factor 2 (HER2)-positive or triple-negative breast cancer (ie, estrogen receptor [ER]-negative, progesterone receptor [PR]-negative, and HER2-negative) who are most likely to have a good locoregional response to treatment, regardless of the size of their breast cancer at presentation.
NACT: Advantages and Disadvantages

Theoretically!?

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in tumor volume</td>
<td>Clinical/radiological staging imprecise</td>
</tr>
<tr>
<td>Tumor down-staging</td>
<td>Overtreatment of small favorable tumors</td>
</tr>
<tr>
<td>In vivo assessment of tumor response</td>
<td>Extent of surgery not confirmed</td>
</tr>
<tr>
<td>Less-extensive surgical resection</td>
<td>Loss of prognostic significance of axillary nodal status</td>
</tr>
<tr>
<td>Postsurgical growth spurt abrogated</td>
<td>Unknown relevance of surgical margins</td>
</tr>
<tr>
<td>Earlier introduction of a systemic therapy</td>
<td>Large number of drugresistant cells present</td>
</tr>
<tr>
<td>Response to chemotherapy serves as a marker for long-term outcome</td>
<td>Delays effective local therapy</td>
</tr>
<tr>
<td>Multiple sequential sampling of primary tumor allows evaluation of biologic changes during chemotherapy</td>
<td>Response of primary tumor may not correlate with response of micrometastases</td>
</tr>
</tbody>
</table>
DOES NACT IMPROVE OVERALL SURVIVAL?

- Neoadjuvant vs adjuvant

- The largest and most important trial was the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-18 trial which compared 4 cycles of doxorubicin plus cyclophosphamide (AC) given either preoperatively or postoperatively.

- 1,523 women with a median tumor size of 3.5 cm were included independent of hormone receptor status.

- In the neoadjuvant arm, the objective clinical response (ORR) rate was 78% with clinical partial response (cPR) in 43% and a clinical complete response (cCR) in 36%.

- A pathologic complete response (pCR) was documented in 13% of patients.
DOES NACT IMPROVE OVERALL SURVIVAL?

- The two main findings in *NSABP B-18* however were

- (1) **no difference in overall survival** (HR = 0.99; 95% CI, 0.85 to 1.16; \(P = .90 \)) and disease free survival (HR = 0.93; 95% CI, 0.81 to 1.06; \(P = .27 \)) between pre- and postoperative chemotherapy;

- (2) patients achieving a pCR had a superior DFS and OS compared to patients not achieving a pCR (DFS: HR = 0.47, \(P < .0001 \); OS:HR = 0.32, \(P < .0001 \)).
Trials comparing the same chemotherapeutic regimen pre- and postoperatively

<table>
<thead>
<tr>
<th>Trial</th>
<th>Phase (n)</th>
<th>Tumors</th>
<th>NA versus adjuvant</th>
<th>Primary endpoint</th>
<th>Other outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBBGS III (272)</td>
<td>III</td>
<td>T2 > 3 cm or T3 N0-1</td>
<td>$3 \times EVM \rightarrow 3 \times ETV$</td>
<td>BCT 63% (33% RT only; 30% S + RT) versus 0%</td>
<td>No difference in DFS or OS; 34% local recurrence with RT only</td>
</tr>
<tr>
<td>Institut Curie S6</td>
<td>III (390)</td>
<td>T2-3, N0-1</td>
<td>$4 \times FAC$</td>
<td>BCT 82 versus 77% (ns) (S only if no cCR after RT)</td>
<td>No difference in DFS and OS, short-term OS benefit ($P = .02$) for NA</td>
</tr>
<tr>
<td>Royal Marsden</td>
<td>III (293)</td>
<td>T0–4, N0-1</td>
<td>$4 \times 2MT$</td>
<td>BCT 89 versus 78% ($P = .004$)</td>
<td>No difference in DFS, OS, and local recurrence; pCR 7%</td>
</tr>
<tr>
<td>NSABP B–18</td>
<td>III (1493)</td>
<td>T1–3, N0-1</td>
<td>$4 \times AC$</td>
<td>5 y-OS: 80 versus 81% (ns); 5 y-DFS: 67 versus 67% (ns)</td>
<td></td>
</tr>
<tr>
<td>EORTC 10902</td>
<td>III (698)</td>
<td>T1c–T4b</td>
<td>$4 \times FEC$</td>
<td>4 y-OS 82 versus 84% ($P = .38$)</td>
<td>4 y-PFS 65 versus 70% ($P = .27$); LRR 5 versus 5% (ns); pCR 4%; downstaging to BCT in 23%</td>
</tr>
<tr>
<td>ABCSG-7</td>
<td>III (423)</td>
<td>T1–3, N0-1 HR + high risk HR+</td>
<td>$3 \times CMF$</td>
<td>RFS better with adjuvant therapy (HR 0.7; $P = .02$); no difference in OS (HR 0.8; $P = .21$)</td>
<td>cORR 56%, pCR 6%; LRR 13 versus 8% ($P = .1$)</td>
</tr>
<tr>
<td>Meta-analysis</td>
<td>IV (3346)</td>
<td>9 randomized trials</td>
<td>Same regimen</td>
<td>No difference in OS (RR 1.0); no difference in DFS (RR 0.99)</td>
<td>LRR higher for NA (RR 1.2; $P = .015$) especially if no S was done; pCR range 4–29%</td>
</tr>
</tbody>
</table>

EVM: epirubicin, vincristin, methotrexat; ETV: mitomycin, thiopeta, vindesine; FAC: 5-FU, doxorubicin, cyclophosphamide; 2MT: mitoxantrone, methotrexate, tamoxifen; AC: doxorubicin, cyclophosphamide; FEC: 5-FU, epirubicin, cyclophosphamide; CMF: cyclophosphamide, methotrexate, 5-FU.
Neo-adjuvant versus Adjuvant

• In summary, the primary objective to show an advantage due to earlier systemic therapy was not met, but it has been shown that neoadjuvant chemotherapy is as effective as adjuvant chemotherapy.

• Additionally, the rate of breast conservation in operable disease can be increased, even if the risk of local recurrence might be slightly higher.
Addition of Taxanes

- The rate of pCR in these early trials was quite low with a range from 4 to 29%. Therefore, the addition of taxanes to the classical anthracycline-based chemotherapy was investigated in several phase-III trials.
Randomized trials incorporating either concurrent or sequential taxane-based neoadjuvant therapy

<table>
<thead>
<tr>
<th>Trial</th>
<th>Phase (n)</th>
<th>Tumors</th>
<th>Treatment</th>
<th>Primary endpoint</th>
<th>Other outcomes</th>
</tr>
</thead>
</table>
| Aberdeen trial | III (162) | ≥3 cm | 4 × CVAP → PR/CR; 4 × CVAP versus 4 × Doc; SD/PD: 4 × Doc | pCR 16 versus 34%; \(P = .04 \) | cORR 66 versus 94%, \(P = .001 \);
| | | | | | BCT 48 versus 67%; 5-year OS (78 versus 93%, \(P = .04 \)); 5-year DFS (72 versus 90%, \(P = .04 \)) |
| NSABP B-27 | III (2411)| T1c-3 N0, T1-3 N1; (median 9 cm) | 4 × AC → S versus 4 × AC → S versus 4 × AC → S → 4 × Doc | DFS (arm 2 versus 1) HR 0.92 (\(P = .29 \));
| | | | | | OS (\(P \) across all 3 arms = .76); RFI (arm 2 versus 1: HR 0.83, \(P = .04 \)) |
| ACCOG | III (363) | ≥3 cm or T4d | 6 × AC versus 6 × ADoc | pCR 24 versus 81% (\(P = .61 \));
| | | | | | cORR 61 versus 70% (\(P = .06 \));
| | | | | | No difference in RFS (\(P = .17 \));
| | | | | | no difference in OS (\(P = .57 \)) |
| Diéras et al. | III (200) | T2-3 N0-1 | 4 × APac versus 4 × AC | pCR 16 versus 10% (\(P = NA \)) | cORR 89 versus 70%; BCT 58 versus 45%; DFS (18 MO: 87 versus 79%); pCR associated with better DFS (31 MO: 91 versus 70%) |
| Meta-analysis IV (2455) | | 7 randomized trials | Anthracycline-based therapy ± taxane | pCR better with sequential (RR 1.73, \(P = .013 \)), but not with concomitant taxanes (RR 1.04, \(P = .77 \)); BCT higher with taxanes (RR 1.11, \(P = .012 \)) | No difference in DFS (RR 0.91, \(P = .12 \)) |

CVAP: cyclophosphamide, vincristin, doxorubicin, prednisone; Doc: doxetaxel; AC: docorubicin, cyclophosphamide; Pac: paclitaxel.
Addition of Taxanes

- Seven randomized trials including 2,455 patients were summarized in a literature-based meta-analysis in order to answer the question if the addition of taxanes to an anthracyclines-based chemotherapy provides an advantage in the primary treatment for early breast cancer.

- The rate of BCT was significantly higher for patients receiving taxanes, with an absolute difference (AD) of 3.4% ($P = .012$).

- The rate of pCR was higher for patients receiving taxanes, but only statistically significant if used in a sequential schedule with an AD of 2.4% ($P = .013$).
Neo-tAnGo study

- Addressed the value of addition of gemcitabine to paclitaxel, and the sequencing of epirubicin and cyclophosphamide and paclitaxel (with or without gemcitabine) blocks

- The investigators concluded that no advantage was provided in terms of pCR rate by addition of gemcitabine: 70 (17%) of 404 patients given epirubicin and cyclophosphamide then paclitaxel had pCR compared with 71 (17%) of 408 patients who received additional gemcitabine (p=0.98).
Neo-tAnGo study

- Conversely, improved pCR was seen with taxane first sequencing for neoadjuvant chemotherapy: 82 (20%) of 406 patients given paclitaxel with or without gemcitabine followed by epirubicin and cyclophosphamide achieved pCR compared with 59 (15%) of 406 patients who received epirubicin and cyclophosphamide first (p=0.03)
Neo-tAnGo study

- The improved pCR reported in Neo-tAnGo with the taxane-first sequence did not translate into improved disease-free survival and overall survival.

- This finding might be related to the small, albeit significant, difference noted in the pCR (20% vs 15%).

- The overall low pCR (17%) was possibly related to the heterogeneous population, which included patients with inflammatory breast cancer.
Taxane first in NACT

- Overall, a taxane-first sequence can be regarded as a reasonable option in neoadjuvant chemotherapy for locally advanced breast cancer.
NACT - Choice

- Doxorubicin and cyclophosphamide followed by weekly paclitaxel (Grade 2C)

- For patients with a contraindication to anthracycline treatment, docetaxel and cyclophosphamide (Grade 2C)

- For patients with a triple-negative (ER, PR, and HER2 negative) breast cancer (TNBC), the addition of carboplatin to standard NACT is reasonable.
NACT - Choice

- For patients whose breast cancer is HER2-positive, the addition of HER2-directed therapy to NACT over chemotherapy alone (Grade 1B)
 - NACT with trastuzumab alone until further data are available to inform whether the addition of pertuzumab in this setting also improves survival outcomes.
 - Other prefer to administer dual HER2-blockade (using pertuzumab with trastuzumab) and NACT based on an increased rate of pathologic complete responses with combined treatment compared with trastuzumab alone.
 - In this scenario, trastuzumab alone without pertuzumab would be continued after surgery.
NACT - Choice

• For women with hormone receptor-positive, HER2-negative breast cancers who are candidates for neoadjuvant therapy,
 - chemotherapy rather than endocrine therapy

• For patients with HR-positive, HER2-negative breast cancers who are not candidates for chemotherapy, endocrine therapy is reasonable
 - an aromatase inhibitor rather than tamoxifen
 - premenopausal women who desire neoadjuvant endocrine therapy rather than chemotherapy should be informed of the lack of data to inform the benefits of this treatment approach
NACT - Surgical approach

• The surgical approach following neoadjuvant treatment depends upon the pretreatment evaluation, clinical response, and patient preference

• Management of the axilla may be influenced by clinical nodal stage at presentation and, in patients with clinically or pathologically positive lymph nodes at baseline, by clinical and pathologic response of the axillary nodes to neoadjuvant therapy
NACT - Monitoring

• Patients receiving neoadjuvant systemic therapy should be followed by clinical exam at regular intervals during treatment to ensure that disease is not progressing.

• At the end of treatment, the assessment of tumor response is important to help guide the surgical approach.
NACT - Monitoring

• For patients on NACT perform a clinical examination every two to four weeks (ie, prior to each cycle of treatment)
 - include evaluation of the affected breast and ipsilateral axilla

• For those undergoing neoadjuvant endocrine therapy, response to treatment is expected to take a longer time to become evident
 - As such, we perform clinical evaluations every four to eight weeks while on treatment

• Imaging studies should only be performed if disease progression is suspected based on clinical exam
Adjuvant following neoadjuvant

- Recommendations regarding adjuvant treatment depend on the pretreatment tumor characteristics, efficacy of treatment as defined at final pathology, and the neoadjuvant treatment administered

 - Regarding postoperative radiation therapy (RT) on the tumor characteristics prior to the start of neoadjuvant therapy

 - In general, postoperative RT for all patients treated with breast conserving surgery, for patients with locally advanced breast cancer (stage III disease) treated with mastectomy, and for the majority of patients with histologically positive lymph nodes remaining after preoperative chemotherapy
Adjuvant following neoadjuvant

- not administering adjuvant chemotherapy after neoadjuvant treatment

- For patients with HER2 positive breast cancer, wadjuvant trastuzumab rather than observation (Grade 1B)

- trastuzumab be administered for a total treatment duration of one year rather than for a shorter duration (Grade 2B)

- For patients with HR positive breast cancer, recommend adjuvant endocrine therapy (Grade 1A)

- For patients with HER2-positive and HR positive breast cancer, initiate endocrine therapy concurrent with trastuzumab
Prognosis

- For patients with aggressive breast cancer subtypes such as triple-negative breast cancer, HER2-positive breast cancer, and high-grade hormone receptor-positive/HER2-negative breast cancer who undergo NACT, prognosis correlates with pathologic response in the breast and the axilla at the time of surgery.

- Patients with hormone receptor-positive breast cancers rarely achieve a pathologic complete response following neoadjuvant endocrine therapy. Until we can validate other ways to quantitate response to this treatment, such as the preoperative endocrine prognostic index (PEPI) score, its efficacy is assessed by clinical response and patient eligibility for breastconserving surgery.
Neoadjuvant therapy

• **Goals**
 – Decrease tumor size
 – Minimize surgery
 – Establish tumor sensitivity

• **Appropriate treatments**
 – Chemotherapy
 – Tamoxifen or aromatase inhibitors
 – Radiation therapy
Neoadjuvant therapy

Advantages

- Higher rate of breast conservation
 - Convert some “inoperable” breast cancer to potentially curative surgical candidates
- Response in real time
 - Lack of response – change regimen
- Prognosis can be refined by degree of residual disease
 - Pathologic clinical response had much higher DFS and OS

Neoadjuvant therapy

- Conclusions
- Neoadjuvant chemotherapy is recommended for patients with locally advanced disease
- A taxane should be included in the regimen
Metastatic Breast Cancer

- Chronic disease
- MS of MBC-2 to 3 yrs/5-10% live more than 10yr.
- 3% to 25% can achieve CR/PR and can be rendered disease free and progression free for more than 5 yrs.
- Optimal sequential use of all modalities can lead to maximum palliation, delay progression and death as much as possible

11/8/2017 ICRO Guwahati
Diagnosis of metastatic breast cancer

Determination of sites and extent of disease
Assessment of HER2, hormonal receptor status, disease-free interval, age, and menopausal status

No life-threatening disease or hormone-responsive

1st-line hormonal therapy

Response
Progression

2nd-line hormonal therapy

Response
Progression

3rd-line hormonal therapy

No Response

Hormone-unresponsive or life-threatening disease

1st-line chemotherapy

Progression

2nd-line chemotherapy

Progression

3rd-line chemotherapy

Supportive care

11/8/2017 ICRO Guwahati
When to initiate chemotherapy (CT) in MBC?

- Difficult decision
- There is no evidence that CT should be initiated as soon as MBC is identified
- Optimal duration of CT also varies on the basis of clinical situation and patient preferences
Figure. Determining treatment for metastatic breast cancer.
ER = estrogen receptor; PR = progesterone receptor.
Drug Approvals for Metastatic Breast Cancer

<table>
<thead>
<tr>
<th>Cytotoxics</th>
<th>Year Approval</th>
<th>First-Line</th>
<th>OS Benefit</th>
<th>Biomarker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel (antitubulin)</td>
<td>1994</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Docetaxel (antitubulin)</td>
<td>1996</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Capecitabine (antimetabolite)</td>
<td>1998</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nab-paclitaxel (antitubulin)</td>
<td>2005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gemcitabine (antimetabolite)</td>
<td>2004</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ixabepilone (antitubulin)</td>
<td>2007</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eribulin (antitubulin)</td>
<td>2010</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biologics</th>
<th>First-Line</th>
<th>OS Benefit</th>
<th>Biomarker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab (anti-HER2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lapatinib (anti-HER2)</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Bevacizumab (antiangiogenic)</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pertuzumab (anti-HER2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ado-trastuzumab emtansine</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Approval revoked in 2011

Cortazar P, et al.[13]
CHEMOTHERAPY REGIMENS FOR RECURRENT OR METASTATIC BREAST CANCER

Preferred single agents:

- Anthracyclines
 - Doxorubicin
 - Pegylated liposomal doxorubicin
- Taxanes
 - Paclitaxel
- Anti-metabolites
 - Capecitabine
 - Gemcitabine

Chemotherapy combinations:

- CAF/FAC (cyclophosphamide/doxorubicin/fluorouracil)
- FEC (fluorouracil/epirubicin/cyclophosphamide)
- AC (doxorubicin/cyclophosphamide)
- EC (epirubicin/cyclophosphamide)
- CMF (cyclophosphamide/methotrexate/fluorouracil)
- Docetaxel/capecitabine
- GT (gemcitabine/paclitaxel)
- Gemcitabine/carboplatin
- Paclitaxel/bevacizumab

Preferred first-line agents for HER2-positive disease:

- Pertuzumab + trastuzumab + docetaxel (category 1)²
- Pertuzumab + trastuzumab + paclitaxel³

Other agents for HER2-positive disease:

- Ado-trastuzumab emtansine (T-DM1)
- Trastuzumab + paclitaxel ± carboplatin
- Trastuzumab + docetaxel
- Trastuzumab + vinorelbine
- Trastuzumab + capecitabine

Agents for trastuzumab-exposed HER2-positive disease:

- Lepatinib + capecitabine
- Trastuzumab + capecitabine
- Trastuzumab + lapatinib (without cytotoxic therapy)
- Trastuzumab + other agents

¹There is no compelling evidence that combination regimens are superior to sequential single agents.

²Randomized clinical trials in metastatic breast cancer document that the addition of bevacizumab to some first- or second-line chemotherapy agents modestly improves time to progression and response rates but does not improve overall survival. The time-to-progression impact may vary among cytotoxic agents and appears greatest with bevacizumab in combination with weekly paclitaxel.

³Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.

⁴Trastuzumab may be safely combined with all non-anthracycline containing preferred and other single agents listed above for recurrent or metastatic breast cancer.

⁵Patients previously treated with chemotherapy plus trastuzumab in the absence of pertuzumab in the metastatic setting may be considered for one line of therapy including both trastuzumab plus pertuzumab in combination or with cytotoxic therapy (such as vinorelbine or taxane). Further research is needed to determine the ideal sequencing strategy for anti-HER2 therapy.
For patients in whom a combination regimen is preferred, the patient’s health status also can help choose the most appropriate regimen. As examples (see 'Combination chemotherapy' below):

- Ideal candidates for an anthracycline-containing regimen include women with chemotherapy naive, stage IV breast cancer (i.e., no prior cytotoxic therapy and those who received endocrine therapy initially) and those who did not previously receive an anthracycline (e.g., those who received docetaxel plus cyclophosphamide in the adjuvant setting). These are among of the most active regimens for metastatic breast cancer. (See 'Anthracycline-containing regimens' below.)

- Patients with a cardiac history (including prior anthracycline-induced cardiac injury) should not be treated with an anthracycline. Our preference is to administer a taxane-based regimen (e.g., gemcitabine plus paclitaxel or docetaxel). (See 'Non-anthracycline, taxane-based regimens' below.)
For patients in whom a single agent is recommended, an understanding of the patient’s health status also may influence the appropriate selection of agents. As examples (see 'single agent chemotherapy' below):

- Patients with a history of cardiac disease or heart failure and those who are felt to be at a greater risk for cardiac injury (eg, elderly patients) should not be treated with an anthracycline. There are multiple appropriate alternatives (eg, paclitaxel or capecitabine).

- Patients with symptomatic peritoneal metastases, those who have difficulty swallowing pills, or those who are not able to follow instructions required to use a daily regimen may not be good candidates for oral therapies (eg, capecitabine).

- Patients at risk for hyperglycemia (eg, patients with diabetes) and those who cannot tolerate steroids for whatever reason may derive more of a benefit from agents that do not require premedication (eg, nanoparticle albumin bound [nAb]-paclitaxel, capecitabine, and gemcitabine).
Toxicities Associated With Approved Therapies

<table>
<thead>
<tr>
<th>Cytotoxics</th>
<th>Hematologic</th>
<th>Non-Hematologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel</td>
<td>++</td>
<td>Neuropathy</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>+++</td>
<td>Asthenia, neuropathy</td>
</tr>
<tr>
<td>Capecitabine</td>
<td>+</td>
<td>Hand-foot syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel</td>
<td>++</td>
<td>Neuropathy</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>++</td>
<td>Asthenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ixabepilone</td>
<td>++</td>
<td>Neuropathy, asthenia</td>
</tr>
<tr>
<td>Eribulin</td>
<td>+++</td>
<td>Neuropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>-</td>
<td>Cardiac dysfunction</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>-</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>-</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Pertuzumab</td>
<td>-</td>
<td>Rash, diarrhea</td>
</tr>
<tr>
<td>Ado-trastuzumab emtansine</td>
<td>+</td>
<td>Asthenia, neuropathy, thrombocytopenia</td>
</tr>
</tbody>
</table>

11/8/2017 ICRO Guwahati
• Patients who received doxorubicin or epirubicin in the adjuvant setting, even years previously, may not be good candidates for repeat anthracycline therapy due to increasing risk of cardiac toxicity at higher cumulative doses. Of the available alternative agents, we typically administer a taxane in these patients. (See 'Taxanes' below.)

• Patients with a history of myelosuppression with prior therapy that resulted in dose modification or treatment delay may not be good candidates for combination chemotherapy, particularly those using agents or schedules with significant myelotoxicity risks (eg, ixabepilone, gemcitabine, and every three-week docetaxel). In these situations, single agent treatment using a weekly anthracycline, capecitabine, or a weekly taxane may be more appropriate. (See 'Taxanes' below and 'Anthracyclines' below.)

• Patients with baseline or a history of serious (grade 3/4) neuropathy may not be good candidates for microtubulin-directed agents (eg, taxanes, ixabepilone, eribulin, or vinorelbine). These patients are appropriate candidates for anthracyclines, especially in the first-line setting in a patient who was never treated with an anthracycline. Alternatives to anthracyclines include capecitabine, etoposide, or gemcitabine. (See 'Anthracyclines' below and 'Other agents' below.)
For patients in whom chemotherapy is recommended, the choice of regimen (ie, single agent or a combination) and selection of a specific therapy depends on multiple factors, including the tumor burden (both in tumor volume and the presence of disease-related symptoms), general health status, prior treatments and toxicities, and patient preferences. These factors can help in the formulation of an individualized treatment plan in the first- or later-line setting. (See 'Factors influencing chemotherapy choice' above.)

For patients with a limited tumor burden and/or limited or minimal cancer-related symptoms, we suggest single agent chemotherapy administered sequentially rather than combination chemotherapy (Grade 2B).
For select patients with symptomatic disease due to the location of specific metastatic lesions (eg, right upper quadrant pain due to expanding liver metastases, or dyspnea related to diffuse lung metastases) and a large tumor burden, we suggest a combination regimen rather than a single agent (Grade 2B). Combination therapy results in a greater likelihood of a response compared with single agent therapy, which may be of a sufficient benefit to justify the risks of treatment.
Careful assessment for response to treatment requires serial clinical examination, repeat lab evaluation (including tumor markers), and radiographic imaging. (See 'Monitoring therapy' above.)

Unlike in the adjuvant setting, there is no predetermined duration of treatment. For the young patient who is responding to treatment, we suggest continuation of chemotherapy beyond best response (Grade 2B). However, for patients who experience side effects to treatment or prefer not to continue treatment for whatever reason, discontinuation of treatment is reasonable. (See 'Duration of treatment' above.)

Some criteria that we use to define treatment failure include any of the following: clinical deterioration during treatment (i.e., increasing disease-related symptoms, intolerable treatment toxicity, a decline in performance status), appearance of new metastases, and increasing size of previously documented metastatic lesions. (See 'Definition of treatment failure' above.)
Cytotoxic Therapy for Metastatic Breast Cancer: Summary

Antitubulin agents have generally supplanted anthracyclines for first-line therapy
- Adjuvant anthracycline therapy commonly used
- Cumulative cardiotoxicity limits rechallenge after recurrence
- Taxanes have comparable or greater efficacy
- Patients who are anthracycline naive may still be treated with anthracyclines as first line

First-line antitubulin therapy
- Weekly paclitaxel or every 3 week docetaxel most effective
- Weekly ixabepilone or nab-paclitaxel not more effective than paclitaxel when combined with bevacizumab
- Neurotoxicity most common with weekly paclitaxel and ixabepilone
- Combination with anti-HER2 therapy in HER2 overexpressing disease improves survival

Second-line or greater antitubulin therapy
- Eribulin associated with overall survival advantage in heavily pretreated patients
- No advantage for eribulin over capecitabine overall
ADVANCED DISEASE - HER2-NEGATIVE -

- **First-line:**
 - Endocrine Therapy (Tamoxifen, AIs, Fulvestrant)
 - Anthracyclines
 - Taxanes
 - Bevacizumab + Paclitaxel
 - Vinorelbine
 - Carboplatin (in TNBC)

- **Further lines:**
 - Endocrine Therapy
 - Everolimus + Exemestane
 - Anthracyclines
 - Taxanes
 - Vinorelbine
 - Eribulin
 - Gemcitabine
 - Capecitabine
 - Nab-Paclitaxel
 - Metronomic chemotherapy

MEDIAN SURVIVAL 3 YEARS
ADVANCED DISEASE
- HER2-POSITIVE (ASCO GUIDELINES 2014) -

First-line:
Pertuzumab + Trastuzumab + Taxane

OUTCOMES
- OS: 37.6 months (placebo) VS not reached (Pertuzumab)
- PFS: 12.4 months (placebo) VS 18.7 months (Pertuzumab)

CLEOPATRA trial
Swain SM, Lancet Oncol 2013

Second-line:
T-DM1
Trastuzumab + chemotherapy
Trastuzumab + Lapatinib

Third-line:
T-DM1
Trastuzumab + chemotherapy
Trastuzumab + Lapatinib

Further lines:
Chemotherapy ± anti-HER2
ET ± anti-HER2

TH3RESA trial
EMILIA trial

OS: 37.6 months (placebo) VS not reached (Pertuzumab)
PFS: 12.4 months (placebo) VS 18.7 months (Pertuzumab)

Swain SM, Lancet Oncol 2013
Krop IE, Lancet Oncol 2014
Verma S, NEJM 2013

11/8/2017
ICRO Guwahati
Therapy for Advanced ER+ Breast Cancer

• Strong preference to begin treatment using endocrine (hormone) therapy, unless cancer is causing significant symptoms/problems

• At least 4+ choices ("lines") of therapy; generally can be very effective at controlling the cancer with minimal side effects

• New approaches are needed to improve efficacy of endocrine therapy and delay onset of resistance
Hormonal Therapy for Advanced Breast Cancer: Milestones

1896
- Oophorectomy and response to advanced disease (George Beatson)

1951
- Estrogen drives breast cancer

1977
- Immuno-histochemistry developed for ER and PR analysis

1990’s
- Estrogen receptor (ER) identified
- Tamoxifen approved

1999
- First selective aromatase inhibitor (AI) approved for ABC
- ER downregulator approved
- AI approved as adjuvant therapy

2002
- mTOR inhibitor + AI approved

2010
- Anti-HER2 + AI approved for ER/HER2+ ABC

2012
- CDK 4/6 Inhibitor + AI approved

2015

Figure 2 First-line systemic therapy for advanced breast cancer.
Table 3. Available endocrine therapies for MBC

<table>
<thead>
<tr>
<th>Class of agent</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective estrogen receptor modulators</td>
<td>Tamoxifen; toremifene</td>
</tr>
<tr>
<td>Estrogen receptor down-regulator</td>
<td>Fulvestrant</td>
</tr>
<tr>
<td>Luteinizing hormone-releasing hormone analogues</td>
<td>Goserelin, leuprolrel, triptorelin</td>
</tr>
<tr>
<td>Third-generation aromatase inhibitors</td>
<td></td>
</tr>
<tr>
<td>Non-steroidal</td>
<td>Anastrozole, letrozole</td>
</tr>
<tr>
<td>Steroidal</td>
<td>Exemestane</td>
</tr>
<tr>
<td>Progestins</td>
<td>Medroxyprogesterone acetate; megestrol acetate</td>
</tr>
<tr>
<td>Anabolic steroids</td>
<td>Nandrolone decanoat</td>
</tr>
<tr>
<td>Estrogens</td>
<td>Estrogens</td>
</tr>
</tbody>
</table>
Fig. 2. Treatment algorithm for postmenopausal patients with hormone receptor-positive and HER2-negative breast cancer.* AI: aromatase inhibitor; CT: chemotherapy; DFI: disease-free interval; EE: exemestane plus everolimus; FUL: fulvestrant; HER2: human epidermal growth factor receptor type 2; HR: hormone receptor; RT: radiotherapy; TAM: tamoxifen. Short DFI: relapse occurs during adjuvant treatment administration or within the first 12 months after finishing it. Long DFI: relapse occurs after 12 months from the end of adjuvant hormonal treatment administration. *All treatment decisions should take into account the toxicity profile of different drugs and patient preferences.
Figure 3: Summary of resistance in breast cancer showing the clinical manifestations of resistance in the neoadjuvant and adjuvant settings, the clinical need to accurately identify high-risk patients, an overview of some of the best described resistance mechanisms and potential treatments and therapeutic strategies currently under investigation to combat resistance.
Figure 3 Management of endocrine-responsive advanced breast cancer.
Diagnosis and Treatment of HR+ mBC

- Staging with CT chest/abdomen/pelvis and bone scan or PET/CT
- Confirmation of histology, if biopsy is feasible
- Determination of ER, PR, and HER2 status
- Review of prior treatments, comorbidities, preferences

- Extensive high-burden disease
- Significant symptoms
- Visceral crisis

Criteria of visceral disease, significant symptoms, etc, not met

Premenopausal
- Tamoxifen/Toremifene
- Ovarian suppression (OS) + tamoxifen/toremifene

Postmenopausal
- Aromatase inhibitor (AI) + palbociclib

* Fulvestrant*
* Exemestane* + everolimus

Progression

"Maintenance"

Cyclin-Dependent Kinases and Cell Cycle Progression

Mitogenic signals

Cyclin proteases

CycD

CDK4 or CDK6

Checkpoints

p16INK4A

Mitotic machinery

Co-repressors

Rb P

E2F

Rb P

E2F

RB-E2F gene expression program:
- Cell cycle: CCNA2, CCNE1, CCNB1, CDK2 and CDK1
- Replication: MCM2, MCM3, MCM5, MCM7, CDT1 and CDC6
- Mitosis: CDC20, PLK1, MAD2L1 and CCNB1

DNA replication machinery

Checkpoints

CDK 4/6 Inhibition Is Most Effective in ER+/Luminal Breast Cancer Cells

Activity Is Initiated in an Rb-Dependent Fashion

In vitro studies of cyclin D kinase inhibitor activity against ER+ luminal cell lines showed significant correlation between molecular subtype and sensitivity to the inhibitor. ($\chi^2 < 0.05$). The subtypes most sensitive to growth inhibition by the inhibitor were ER-positive.

Cyclin Dependent Kinase (CDK 4/6) inhibition

- A classic feature of breast cancer is uncontrolled growth

- In ER+ breast cancer, out-of-control growth may be due to a failure in the braking system: overactive CDK4/6
CDK4/6 in Breast Cancer

- Resistance to endocrine therapy presents a major clinical challenge.
- The growth of HR+ breast cancer is dependent on Cyclin D1, a direct transcriptional target of ER.
- Cyclin D1 activates CDK 4/6 resulting in G1–S phase transition and entry into the cell cycle.\(^1\)
- Cell line models of endocrine resistance remain dependent on Cyclin D1 and CDK4/6.\(^2,3\)

What’s Hot for ER+ Breast Cancer?
CDK 4/6 inhibition

- CDK 4/6 Inhibition:
 - puts the brakes on cell growth
 - pushes cancer cells towards cell death
Palbociclib (Ibrance)

- Palbociclib: oral inhibitor of CDK 4/6
- Taken daily, 3 weeks on, 1 week off
- Most common toxicities: low white blood cell count (but no infections), fatigue, mild hair thinning
What if you could help the immune system respond to cancer cells?
Immunotherapy in Cancer

- First generation (anti-CTLA4)
 - Ipilimumab: approved for melanoma

- Second generation (anti-PD1 or PDL1)
 - Nivolumab: approved for melanoma, lung cancer
 - Pembrolizumab: approved for melanoma

What about breast cancer?
T-cells are designed to recognize and kill tumor cells
PD-1 acts as an “off-switch” for T-Cells
PD-1/PD-L1 inactivates T-Cells
Antibodies to PD-1 or PD-L1 prevent tumor cells from inactivating T-cells.
Early PD1/PDL1 Experience in Breast Cancer

- Immune cells often found infiltrating triple negative breast cancer – potentially indicates candidacy for immune therapy!

- Two Phase 1 trials completed in patients with advanced triple negative breast cancer
 - More response seen than expected with chemotherapy
 - Will tolerated

- Phase 2 and 3 trials opening now

- Many questions need to be figured out:
 - Is immunotherapy for everyone or can we find tumor markers that predict who will get more benefit?
 - Do we need to test tumor for PDL1
 - Will immunotherapy have benefit in other types of breast cancer, ie HR+, HER2+?
New Concepts

- Triple Negative
- Chemotherapy resistance
- Hormonal resistance
- Dose Dense Schedule
- Metronomic Therapy
Major Problems

- Drug resistance
- Brain metastases
- Treatment-related toxicities (includes venous access)
- Cost of therapy
Thank you for your patient hearing