ICRU 89: Changes over GEC-ESTRO guidelines for cervical cancer

Dr. Ajeet Kumar Gandhi
MD (AIIMS), DNB, UICCF (MSKCC, USA)
Assistant professor, Radiation oncology
Dr. RMLIMS, Lucknow
Learning Objectives

- Understand the concepts and learn the terms for planning, prescribing, recording and reporting the target volumes and OARs for 3D IGABT
- Use dose volume and dose point parameters for planning aims and dose prescription
- Learn changes in ICRU 89 over GEC-ESTRO
September 16, 1903: Treated a case of carcinoma cervix initially treated with Intracavitary X-rays: Radium vials applied to fornices 10 min Day 1 and 5 min Day 2 [Intracavitary radium for gynecological malignancies Med Rec 1903;64:601-606]
Early applicators: 1903-1913

Figure 1: Wickham and Degrais; St. Louis hospital, Paris

Figure 2&3: Carl Josef Gauss (‘Inter-cervical tubes’ and Portio plates): Mostly used in Germany
Dawn of a new era: 1910-1930

- Stockholm System: Gosta Forssell (1910)
- Paris System: Claude Regaud (1912)
- Manchester System: Todd and Meredith (1930)
Point A & B

- **Classic definition**: fixed point 2cm lateral to the center of uterine canal and 2 cm above from the mucosa of the lateral fornix
- **Revised definition #1**: 2 cm above the external cervical os and 2 cm lateral to midline
- **Revised definition #2** (1953, Tod & Meredith): 2 cm above the distal end of the lowest source in the tandem and 2 cm lateral to the tandem
- Common variation: use flange at cervical os

The work of T. F. Todd, already referred to, supports the contention that the initial lesion of irradiation necrosis is always due to high dose effects in this paracervical region, and not a direct effect on the rectum. It therefore seems reasonable to regard tolerance here as the limiting factor of normal tissue tolerance in the irradiation of the uterine cervix, and it is on this assumption that the principles to be outlined are based. The area described will be
Initially used radium units were 6.66 mg but later changed to 2.5 mg each. Two application 72hrs apart with 4 days in between. Dose of 8000R was delivered at pt A when radium used alone for stage I/II ds. When radium was used along with deep-X ray therapy for stage III or IV ds radium dose to pt A reduced to 6500R.

Table III. Proportions in which radium is placed in vaginal ovoids and uterine tubes

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter</th>
<th>Units</th>
<th>Total Radium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>3 cm.</td>
<td>9</td>
<td>2.5 x 9 = 22.5 mg.</td>
</tr>
<tr>
<td>Medium</td>
<td>2.5 cm.</td>
<td>8</td>
<td>2.5 x 8 = 20.0 mg.</td>
</tr>
<tr>
<td>Small</td>
<td>2.0 cm.</td>
<td>7</td>
<td>2.5 x 7 = 17.5 mg.</td>
</tr>
<tr>
<td>Uterine tubes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td>6.0 cm.</td>
<td>4</td>
<td>2.5 x 4 = 10 mg.</td>
</tr>
<tr>
<td>Medium</td>
<td>4.0 cm.</td>
<td>6</td>
<td>2.5 x 6 = 15 mg.</td>
</tr>
<tr>
<td>Short</td>
<td>2.0 cm.</td>
<td>8</td>
<td>2.5 x 8 = 20 mg.</td>
</tr>
</tbody>
</table>
ICRU-38: Dose-Volume specification for reporting intracavitary Therapy in Gynecology [1985]

- Definition of terms and concepts for ICBT
 - Treatment techniques
 - Absorbed dose pattern and volumes
 - Specification of radioactive sources

- Recommendations for reporting absorbed doses and volumes in ICBT
 - TRAK
 - Reference volume
 - Absorbed dose at reference points
 - Calculation of dose distributions

- Time-Dose pattern
 - Radiobiological considerations
 - Recommendations for reporting time-dose pattern
ICRU 38: Target volume
ICRU 38: Target volume
ICRU 38: Bladder and Rectal points
2D Brachytherapy: ICRU
Time to move from points to profiles

- Point A & B are not anatomical sites. The variation in position and distribution of sources significantly changes the anatomic structures in which points A & B are located.
- No one point is representative even of a small volume.
- It is viewed as a treatment reference point.
Newer imaging modalities are used to define target volumes

- USG, CT, MRI (preferred), PET

Prescribed dose - related to the target

- Shape the spatial dose to conform to the target volume
 - Reduce dose to normal tissues & hence reduce the normal tissue toxicity.
 - Escalate dose to the tumor to produce greater rates of local control
Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group☆ (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV

Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

Richard Pötter,⁎, Christine Haie-Meder, Erik Van Limbergen, Isabelle Barillot, Marisol De Brabandere, Johannes Dimopoulos, Isabelle Dumas, Beth Erickson, Stefan Lang, An Nulens, Peter Petrow, Jason Rownd, Christian Kirisits
Pre-requisites for IGBT: GEC-ESTRO

- Baseline clinical documentation
- MRI at diagnosis
- Clinical examination and MRI prior to brachytherapy
- MRI after ICBT application
- Advanced TPS: Delineation and planning
- HDR Brachytherapy after loaders
At Diagnosis

IIIb

\[w = 9.0 \text{ cm} \]
\[h = 6.0 \text{ cm} \]
\[t = 5.0 \text{ cm} \]

Vagina: 5 cm

At Brachytherapy

Dose of EBRT _

\[w = 9.0 \text{ cm} \]

Note: vagina and parametria not included in \(h \)

dd/mm/yy

Signature

Case IV
At Diagnosis □

IIIB

\[w = 6.8 \text{ cm} \]
\[h = 4.2 \text{ cm} \]
\[t = 4.5 \text{ cm} \]

Vagina: 0 cm

At Brachytherapy
Dose of EBRT 50.4 Gy

\[w = 6.8 \text{ cm} \]

dd/mm/yyyy

Signature

Note: parametria not included in h.

Case IV
GEC-ESTRO Volume concepts

Potential microscopic tumour spread

Macroscopic tumour load

Potential microscopic tumour spread

Pelvic wall region

cervix

Pelvic wall region

Significant microscopic disease

Significant microscopic disease
2 CTVs

A first target related to the extent of GTV **at time of BT:**
corresponding to residual disease
with a high dose prescribed to this target (80-90 Gy)
High risk CTV

A second target related to the extent of GTV **at diagnosis**:
with an intermediate dose prescribed to this target (60 Gy)
Intermediate risk CTV

High Risk CTV:
GTV at time of brachytherapy
In all cases includes:
• Whole cervix
• [Presumed tumour extension (=0)]
• Clinical assessment
• [Residual grey zones on MRI]

Intermediate Risk CTV:
GTV at time of diagnosis
In all cases includes:
• HR-CTV
• integrates initial CTV
SAFETY MARGINS:
1-1.5 cm cranially
0.5cm antero-posteriorly
1cm laterally
IR-CTV: for extensive disease

Complete remission
- HRCTV + GTV_D (No safety margin)

Partial response
- HRCTV + GTV_D + safety margin of ≥ 10 mm added in the direction of potential spread.

Stable disease
- HRCTV + GTV_D + safety margin of ≥ 10 mm to the initial tumour extension at diagnosis.
Delineation of OARs

- Rectum: Begin 1 cm above the anus, ended at the sigmoid flexure, and covered the outer wall of the organ.
- Sigmoid: Begin at the level of the recto-sigmoid flexure and ended at the anterior crossing of the sigmoid by the pubic symphysis.
- Bladder contour to include outer wall of the bladder and ended at the beginning of the urethra.
Three quantities to characterize the dose distribution for OAR.

- Minimum dose in the most irradiated tissue volume adjacent to the applicator (0.1, 1 & 2 cc) is recommended for recording.
- D_{2cc}: Useful during dose planning and for evaluating toxicities
- $D_{0.1\, cc}$: Indicative of the maximum dose.

Potter et al. Radiother Oncol, 2006
Target dose specification for GTV, HRCTV & IRCTV

- Minimum target dose D_{100} & D_{90}: Minimum dose delivered to 100% & 90% of target
- V_{100}

Dose prescription

<table>
<thead>
<tr>
<th>Volume/Point</th>
<th>ABS</th>
<th>EMBRACE Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>Variable</td>
<td>No recommendation</td>
</tr>
<tr>
<td>HR-CTV D90</td>
<td>≥80-90 Gy EQD2</td>
<td>According to institutional practice</td>
</tr>
<tr>
<td>IR-CTV D90</td>
<td>No recommendation</td>
<td>According to institutional practice</td>
</tr>
<tr>
<td>D2 cc bladder</td>
<td>≤90 Gy EQD2</td>
<td><90 Gy EQD2</td>
</tr>
<tr>
<td>D2 cc rectum</td>
<td>≤75 Gy EQD2</td>
<td><70-75 Gy EQD2</td>
</tr>
<tr>
<td>D2 cc sigmoid</td>
<td>≤75 Gy EQD2</td>
<td><75 Gy EQD2</td>
</tr>
</tbody>
</table>
Need for a new ICRU report in brachytherapy

- Previous report (ICRU 38) based on mostly on X-ray images
- Volumetric imaging (mostly CT) increasing in practice
- Development of specific concepts and terminologies like GEC-ESTRO
- Limited application of pure GEC-ESTRO guidelines (resource constrained settings)
GEC-ESTRO & ICRU-89
GEC-ESTRO Recommendations for IGBT

- Some new definitions & reporting
- Integrations with EBRT
Holistic/descriptive approach

ICRU/GEC ESTRO recommendations for gynecological brachytherapy

1. INTRODUCTION
2. PREVENTION, DIAGNOSIS, PROGNOSIS, TREATMENT AND OUTCOME
3. BRACHYTHERAPY TECHNIQUES AND SYSTEMS
4. BRACHYTHERAPY IMAGING FOR TREATMENT PLANNING
5. TUMOR AND TARGET VOLUMES AND ADAPTIVE RADIOTHERAPY
6. ORGANS AT RISK-AND-MORBIDITY-RELATED CONCEPTS AND VOLUMES
7. RADIobiological Considerations
8. DOSE AND VOLUME PARAMETERS FOR PRESCRIBING, RECORDING, AND REPORTING OF BRACHYTHERAPY ALONE AND COMBINED WITH EXTERNAL BEAM RADIOTHERAPY
9. 3D VOLUMETRIC DOSE ASSESSMENT
10. RADIOGRAPHIC DOSE ASSESSMENT
11. SOURCES AND DOSE CALCULATION
12. TREATMENT PLANNING
13. SUMMARY OF THE RECOMMENDATIONS
APPENDIX – EXAMPLES, SPREADSHEETS, DRAWINGS

Committee:
Chairmen: Richard Pötter, Christian Kirisits
B. Erickson, C. Haie-Meder, J. Lindegaard, E. van Limbergen, J. Rownd, K. Tanderup, B. Thomadsen
Continued emphasis on clinical documentation

- Documentation by Clinical Drawings
- At Brachytherapy
- At Diagnosis

• Complimentary to other imaging modalities
Volume concepts: ICRU 89

<table>
<thead>
<tr>
<th></th>
<th>EBRT</th>
<th>Brachytherapy</th>
<th>Adaptive RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTV</td>
<td>GTV-T ***</td>
<td>GTV-Brachytherapy</td>
<td>GTV-T ini</td>
</tr>
<tr>
<td>GTV-T res</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTV</td>
<td>CTV-T</td>
<td>CTV-T HR</td>
<td></td>
</tr>
<tr>
<td>CTV-T1</td>
<td>GTV-T+ Adjacent tissue+ Whole cervix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTV2</td>
<td>CTV1+Margin</td>
<td>CTV-T IR</td>
<td>GTV-T res + Residual pathological tissue</td>
</tr>
<tr>
<td>CTV3</td>
<td></td>
<td>CTV-T LR</td>
<td></td>
</tr>
<tr>
<td>CTV-T adapt</td>
<td>CTV-Tadap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTV-T</td>
<td>CTV + Margin</td>
<td>Not recommended (Research purpose)</td>
<td></td>
</tr>
</tbody>
</table>
Volume terminologies

- GTV init (GTV at diagnosis)
- GTV res (GTV at brachytherapy)
- CTV$_{HR}$ (GTV res + residual pathological tissue + whole cervix)
- CTV$_{IR}$: GTV init and CTV-HR plus safety margins
Radiographic dose assessment
Point A Localization

(a)

axial

0.5 cm

0.5 cm

Pt A

2 cm

2 cm

Pt A

2 cm

2 cm

Pt A

2 cm

Pt A

2 cm

sagittal
Other volumes: Radiographic assessment

- Pelvic wall point
- Lymphatic trapezoid
- Rectal point and bladder point
- Vaginal point
- Sigmoid reference point: No consensus as yet
Defining vaginal point
Organ wall/whole organ contouring
Vaginal point definition
Vaginal reference length (VRL)
Dose reporting for defined volumes based on volumetric imaging:

- D_{98}, D_{90}, D_{50} for CTV_{HR}
- (D_{98}, D_{90}, D_{50} for CTV_{IR} if used for prescription)
- D_{98} for GTV_{res}
- D_{98} for pathological lymph nodes

- **D90**: Minimum dose within most exposed 90% of volume of interest
 - reliable and reproducible, but 10% „neglected“ (clin relevance)
- **D 98**: Minimum dose within most exposed 98% of volume of interest
 - reliable and reproducible, 2% not included
- **[V100: Volume receiving prescribed physical dose (V150%/V200%)]**
 - indicates target coverage;
 - only relevant within a specific dose (rate) and fractionation schedule
- **D50**: Minimum dose within most exposed 50% of volume of interest
D_{2cc}
w x h:
30mm x 30mm

D_{1cc}

$D_{0.1cc}$
10mm x 10mm
3D-based Dose Volume
Parameters for OAR

CLASSICAL MAX DOSE in 2D:
in 3D a voxel is no clinical relevant endpoint

FIXED VOLUME: tolerance dose (total dose)-
“minimum dose to the most exposed tissue”*

1cc/2cc: teleangiectasia
(20 mm x 20 mm x 5 mm)

2 cm³

0.1 cm³

0.1 cc: 3D”maximum dose”:
ulceration(fistula)

*GYN GEC ESTRO Recommendations(II)
Radiother Oncol 2006
Three levels of reporting

- Level 1 - *Minimum standard for reporting*

- Level 2 - *Advanced standard for reporting*

- Level 3 - *Research oriented reporting*
Level 1 reporting: Target volumes

Volumetric-imaging approximation based on:

- Comprehensive clinical gynecologic examination
- Volumetric imaging (MR, CT, US, PET–CT) at the time of diagnosis and brachytherapy

FIGO/TNM stage

Baseline morbidity and QoL assessment

Schematic 3D documentation on a clinical diagram indicating dimensions (width, thickness, height) and volumes for:

- GTV_{init} (the GTV at diagnosis)
- GTV_{res} (the GTV at brachytherapy)
- CTV_{HR} [the GTV$_{\text{res}}$ (if present) plus residual pathologic tissue (if present) plus whole cervix]
- (CTV$_{\text{HR}}$: area of GTV$_{\text{init}}$ and/or CTV$_{\text{HR}}$ plus safety margin if used for prescription)

Radiographic approximation based on:

- Comprehensive clinical gynecologic examination
- Radiographic imaging (plus additional volumetric 3D imaging if available)

FIGO/TNM stage

Baseline morbidity and QoL assessment

Schematic 3D documentation on a clinical diagram indicating dimensions [width, thickness, (height)] and volumes for:

- GTV_{init} (the GTV at diagnosis)
- GTV_{res} (the GTV at brachytherapy)
- CTV_{HR} [the GTV$_{\text{res}}$ (if present) plus residual pathologic tissue (if present) plus whole cervix]
- (CTV$_{\text{HR}}$: area of GTV$_{\text{init}}$ and/or CTV$_{\text{HR}}$ plus safety margin if used for prescription)
Level 1 reporting: Minimum requirements

- Comprehensive clinical examination
- Volumetric imaging at the time of diagnosis and brachytherapy
- FIGO/TNM staging
- Baseline morbidity and QOL
- 3-D diagrammatic documentations
 - GTV init (GTV at diagnosis)
 - GTV res (GTV at brachytherapy)
 - CTV_{HR} (GTV res +residual pathological tissue + whole cervix)
 - CTV_{IR}: GTV init and CTV-HR plus safety margins
Level 1 reporting: Minimum requirements

- **Dose delivery pattern:**
 - Absorbed-dose rate/dose per fraction
 - Number of fractions
 - Time between fractions
 - (Pulse number, size, time, if PDR)
 - Overall treatment time
 - Total EQD2 dose

- **Source and dose calculation:**
 - † Radionuclide and source model
 - † Source strength
 - † Dose-calculation algorithm
Level 2: Advanced standard of reporting

- 3D delineation of volumes (on volumetric imaging with applicator/Radiographic approximation)
 - GTV res (GTV at brachytherapy)
 - CTV_{HR} (GTV res + residual pathological tissue + whole cervix)
 - With maximum width, height, and with volume

- Dose reporting for defined volumes:
 - D98 %, D90 %, D50 % for the CTVHR
 - (D98 %, D90 % for the CTVIR if used for prescription)
 - D98 % for GTVres
 - D98 % for pathological lymph nodes
 - Estimated dose to CTV HR, Pelvic wall point and L Trapezoid
Level 2: Advanced standard of reporting

- Dose reporting OARs:
 - Bladder reference point dose
 - D0:1cm³, D2cm³ for sigmoid
 - D2cm³ bowel
 - Intermediate- and low-dose parameters in bladder, rectum, sigmoid, bowel (e.g., V15 Gy, V25 Gy, V35 Gy, V45 Gy or D98 %, D50 %, D2 %)
 - Vaginal point doses at level of sources (lateral at 5mm)
 - Lower- and mid-vagina doses (PIBS, PIBS+2 cm)
Level 3: Research-oriented reporting

- Volumetric-imaging approximation based on Tumor-related volumes:
 - GTV, CTVHR sub-volumes based on functional imaging (diagnosis, during treatment, and at brachytherapy)
 - PTV
- **Isodose surface volumes**: 60 Gy and 85 Gy EQD2 volume
- **Dose reporting for tumor**:
 - D98 % and D90 % for the CTVIR even if not used for prescription
 - D90 % for the GTVres
 - DVH parameters for the PTV
 - D50 % for pathological lymph nodes
 - DVH parameters for non-involved nodes (ext/int iliac, common iliac)
Level 3: Research-oriented reporting

- OAR volumes and points:
 - Additional bladder and rectum reference points
 - Anal canal (sphincter)
 - Vulva (labia, clitoris)
 - Sigmoid point
 - OAR sub-volumes (e.g., trigonum or bladder neck, sphincter muscles)
 - Vagina (upper, middle, lower)
 - Other volumes/sub-volumes of interest (e.g., ureter)
 - Remaining volume of interest akin to RVR

- Dose–volume reporting for OAR:
 - Length of treated vagina
 - Dose–volume and dose–surface histogram parameters for additional OARs and sub-volumes
 - Vaginal dose profiles, dose–volume, and dose–surface histograms
Assessment and reporting of absorbed and equieffective EBRT and brachytherapy doses

Reporting of dose for relevant targets, OARs, and dose points:
- Planning-aim dose
- Prescribed dose
- Delivered dose

Absorbed dose and number of fractions assessed for target, OARs, dose points:
- Brachytherapy
- EBRT

Total equieffective dose (EQD2) calculated according to the linear-quadratic model through the following steps:
1. Brachytherapy EQD2 for each fraction
2. Total brachytherapy EQD2
3. Total EBRT EQD2
4. Accumulated total EBRT + brachytherapy EQD2 (based on current assumptions outlined in Sections 7.6, 8.5, 9.5.3)
DVH analysis of MR-guided intracavitary PDR brachytherapy

<table>
<thead>
<tr>
<th>Pt. ID</th>
<th>Optimized plan</th>
<th>Variable</th>
<th>Unit</th>
<th>BT1</th>
<th>BT2</th>
<th>BT3</th>
<th>Sum</th>
<th>CERR-BT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tandem length</td>
<td>mm</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ring diameter</td>
<td>mm</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of pulses</td>
<td>no</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulse duration</td>
<td>s</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source strength factor</td>
<td>mCi</td>
<td>206</td>
<td>202</td>
<td>202</td>
<td>408</td>
<td>1470</td>
</tr>
<tr>
<td></td>
<td>TUMOR</td>
<td>Prescribed Dose (PD)</td>
<td>Gy</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>30.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDmin (EQD2)</td>
<td>Gy</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>33.6</td>
<td>67.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume of PD</td>
<td>cm³</td>
<td>88.3</td>
<td>88.3</td>
<td>88.3</td>
<td>265.1</td>
<td>530.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDRPDmin</td>
<td>Gy</td>
<td>20.1</td>
<td>20.1</td>
<td>20.1</td>
<td>60.4</td>
<td>120.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD Point A</td>
<td>mm</td>
<td>21.1</td>
<td>18.9</td>
<td>18.9</td>
<td>68.9</td>
<td>137.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD Point A</td>
<td>mm</td>
<td>18.4</td>
<td>19.3</td>
<td>18.3</td>
<td>56.0</td>
<td>112.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Point A</td>
<td>Gy</td>
<td>18.7</td>
<td>9.9</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dmax point A</td>
<td>Gy</td>
<td>12.1</td>
<td>11.0</td>
<td>7.7</td>
<td>30.8</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dmax point A</td>
<td>Gy</td>
<td>9.8</td>
<td>9.3</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dmax point A</td>
<td>Gy</td>
<td>10.8</td>
<td>10.0</td>
<td>8.0</td>
<td>38.4</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dmax point A</td>
<td>Gy</td>
<td>11.1</td>
<td>9.0</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dmax point A</td>
<td>Gy</td>
<td>11.4</td>
<td>10.9</td>
<td>8.3</td>
<td>36.1</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td>CERV</td>
<td>Volume of CERV</td>
<td>cm³</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>75.3</td>
<td>150.6</td>
</tr>
<tr>
<td></td>
<td>Stroke volume</td>
<td>mm</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height</td>
<td>mm</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thickness</td>
<td>mm</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTV</td>
<td>Volume of GTV</td>
<td>cm³</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTV = GTV</td>
<td>Gy</td>
<td>11.2</td>
<td>11.2</td>
<td>11.2</td>
<td>33.6</td>
<td>67.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D95</td>
<td>Gy</td>
<td>13.4</td>
<td>13.4</td>
<td>13.4</td>
<td>40.2</td>
<td>80.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90</td>
<td>Gy</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>54.0</td>
<td>108.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90</td>
<td>Gy</td>
<td>25.3</td>
<td>25.3</td>
<td>25.3</td>
<td>75.9</td>
<td>151.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100</td>
<td>%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>HN CTV</td>
<td>Volume of HN CTV</td>
<td>cm³</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>75.3</td>
<td>150.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTV = HNCTV</td>
<td>Gy</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>28.2</td>
<td>56.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90</td>
<td>Gy</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
<td>41.1</td>
<td>82.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90</td>
<td>Gy</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>47.1</td>
<td>94.1</td>
</tr>
</tbody>
</table>
D2cc = 65.7 Gy EQD2(w\(\beta=3\))

D2cc = 79.2 Gy EQD2(α\(\beta=3\))

Homogenous volume for inverse dose planning
Take home message

- ICRU 89: Amalgamation of GEC-ESTRO and ICRU 38
- Continued emphasis on clinical documentation of disease
- Novel concepts of adaptive volumes, vaginal points, some changes in terminologies
- Three levels of reporting stratified as per resources available
- Integrated reporting of EBRT and brachytherapy
- Challenges in widespread application of these guidelines remain
Thank you!!