Functional Imaging FDG

S. Gambhir Nuclear Medicine SGPGIMS, Lucknow

COINCIDENCE IMAGING

Positron Decay

Positron Annihilation

- Two 511 keV photons
- Emitted <u>simultaneously</u>

180° apart

PET

PET tracers annihilate with emission of two 511 Kev gamma rays emitted at 180 degree apart.

solution

PET RADIOPHARMACEUTICALS

PET tracers in Oncology.

Fluodeoxyglucose F-18
Water O-15
Sodium acetate C-11
Carbon monoxide C-11
Fluoride F-18
Methionine C-11
Thymidine C-11
Ammonia N13

FLUORINE-18 FLUORODEOXYGLUCOSE

Oncological PET

HCFA / CMS Approved

Lung

Malignant Lymphoma

Colorectal

Malignant Melanoma

Esophagus

Head & Neck Cancer

Breast

Brain

Melanoma

Pancreas

Bone & Soft Tissue

Ovarian Cancer.

Thyroid Ca.

What is an FDG-PET scan?

- It is not a cancer scan
 - Wide range of potential false positive and false negatives

An FDG-PET scan is:

- A map of glucose metabolism in the body
 - In 3D space (spatial domain)
 - At a particular time (temporal domain)
 - Dual time point imaging (DDx cancer vs infection)

Role of FDG-PET in oncology

- Shown to be more accurate than conventional staging and restaging in a range of malignancies
 - Upstage cancer reduces futile and toxic therapies (also cost savings)
 - Downstage cancer allows more therapeutic options
 - More accurately restage and assess treatment response of cancer

Tumours with low FDG uptake or otherwise difficult to visualise on PET scans

- BAC lung
- Mucinous adenocarcinomas
- Carcinoid
- Low grade sarcoma
- Some low grade lymphomas esp MALT, SLL
- Hepatocellular carcinoma
- Cerebral metastases
- Prostate
- Renal

SUMMARY OF EVIDENCE FOR FDG PET IN LUNG CANCER

For Staging:

 An estimated 37% change was noted in management effect, based on 1,565 patient studies

COLON CANCER

Metastatic Colon Cancer

HD.

Advantages of Nuclear Medicine?

- Metabolic imaging
- Quantitation is possible especially with PET
- PET provides ideal solution to quantitate tumor biological parameters such as metabolism, receptor quantity, cell proliferation and uptake of therapeutic agents.

EVALUATING TREATMENT RESPONSE

- Tumor response to chemotherapy:
 - Biologic and metabolic decrease in metabolic function and trapping of radiopharmaceuticals occurs:
 - Very early after initiation of treatment
 - Precedes clinical decrease in tumor size
 - Precedes decrease in size detected by X-ray, CT or MRI.
- Important to be evaluated early in the course of treatment in order to either continue on same chemotherapy or change to a different regimen before bone marrow depression.

NHL Pre-chemotheray

NHL Post-chemotheray

FDG-PET PREDICTION OF RESPONSE TO NEOADJUVANT CHEMOTHERAPY IN CARCINOMA OF THE GE JUNCTION

Weber, et al., J Clin Oncol 19:3058, 2001

FDG-PET PREDICTION OF RESPONSE TO NEOADJUVANT CHEMOTHERAPY IN CARCINOMA OF THE GE JUNCTION

Baseline

Day 14

Responder

Nonresponder

Weber, et al., J Clin Oncol 19:3058, 2001

METABOLIC RESPONSE TO GLEEVEC IN GIST DANA-FARBER CANCER INSTITUTE

Baseline months

24 hours

7 days

2 months

5.5

OTHER PET APPROACHES FOR ASSESSING RESPONSE TO THERAPY

- Monitoring
 - · Blood flow
 - · Amino acid metabolism
 - DNA synthesis (proliferation)
 - Apoptosis
- Predicting
 - · Chemotherapeutic agents
 - MDR substrates
 - Hypoxia tracers
 - Receptor ligands

PREDICTING RESPONSE OF ADVANCED BREAST CANCER TO HORMONAL THERAPY

- Hormonal therapy
 - Low morbidity alternative to chemotherapy
 - Only 50-60% of patients with ER+ breast cancer respond to hormonal therapy
 - Suggests that receptors not always functional
- Hypothesis: FDG-PET can be used to define functional estrogen receptors by detecting metabolic response to receptor agonist

PREDICTING RESPONSE TO HORMONAL THERAPY

"Metabolic Flare"

- FDG-PET before and after 7-10 days tamoxifen in 40 pts. with advanced ER+ cancers
- With change ≥ 10%:
 PPV 91%
 NPV 94%
 for predicting response

Responders

N = 21

Non-responders

N = 19

Mortimer, et al. JCO 2001; 19:2797

BREAST CARCINOMA: THERAPY FDG-PET PREDICTING OF RESPONSE TO HORMONAL Before Hormonal Therapy After Hormonal Therapy

Responder

SUV=4.7

SUV=7.5

Nonresponder

SUV=5.7

SUV=5.5

Clinical Trials (11)	Imaging Modality
Lymphoma (2)	FDG PET-CT DCE MRI
Head and Neck (2)	FDG, FLT, F18-FMISO PET
Brain (2)	FDG, FLT, PET MRS, DCE MRI
Ovarian (1)	FLT, FDG PET
Lung (1)	FDG PET
GU (1)	C-11 Acetate PET
Radiation Oncology (2)	FDG, FLT, F18-FMISO PET

Monitor the response of tumors to antiproliferative treatment

3'-Deoxy-3'-[18F]fluorothymidine ([18F]FLT)

FLT is a substrate for thymidine kinase (first step in DNA synthesis)

F-18 FLT shows regions of cell proliferation

Compare with Ki-67 (MiB-1) immunoperoxidase stain

The Role of Hypoxia in Clinical Response to Stereotactic Radiosurgery in Head and Neck Cancer (Drs. Lai, Grandis)

Hypoxia Tracer Development F-18 Fluoromisonidazole (F-18 FMISO)

Hypoxia reduces tumor sensitivity to radiation therapy and chemotherapy

PET Imaging of SCC Murine Tumors ([18F]-FDG vs. [18F]-FMISO)

Left. MicroPET images show increased FDG uptake in the anterior metabolic portion of the tumor, while FMISO uptake was increased in the posterior hypoxic portion of the tumor

Right. Time-activity curves of tumor uptake

Ethmoid Sinus Carcinoma – CT and PET contours for tumor areas depicting anatomic and functional abnormalities

GTVc = gross tumor volume on CT GTVp = gross tumor volume on PET

CT and PET contours for nodal areas depicting anatomic and functional abnormalities

ABNc = abnormal nodal region on CT; ABNp = abnormal nodal region on PET.

Additional areas of FDG avidity on PET, not discernable as abnormal on CT.

21 patients were simulated for treatment on PET-CT for IMRT in Varian Eclipse planning system

Volumes for the primaries were larger anatomically (CT) compared with PET

In 8/21 patients, additional areas of disease were seen on PET compared to CT

CT/PET Image Fusion

- Guide surgery or biopsy
- Oncology
 - fibrosis vs. active tumor
 - evaluation of therapy response
 - uptake of FDG vs. size on CT
- Radiotherapy Applications
 - Tailor field size to viable tumor
 - Assessment of residual mass on CT post therapy

Clinical Integration

From Imaging to Planning to Therapy

Therapy Connectivity

- Therapy Connectivity
 - PET and CT DICOM
 - Established connectivity with:
 - · Varian, Nomos, Nucletron...etc

Limitations of PET

General Limitations:

High cost.

Require large space.

High training for the operating staff is a must.

Specific Limitations:

FDG-is a non-specific agent.

False positive uptake in granulomas.

Difficult to interpret in areas of normal uptake.

Depend on glucose transport, that's why not sensitive

in mucine & mucinous secreting tumors.