Target volumes for Post mastectomy Radiotherapy in breast cancers

Punita Lal

Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow

Road map

- Indications and Recommendations
- Post operative Anatomy
- Delineation of CTV chest wall & LN

Chest wall Radiotherapy in LN +ve or >T3 disease

1789 patients, 1982 – 1989, premenopausal, node + or Tumor > 5cm, M0 Total mastectomy, level I + II (partly) + CMF +/- 50Gy/25fx (electrons + photons) Sx in 79 departments, RT in mainly 6 centers

Local rec. 32% vs. 9% OS 40% vs. 54%

Overgaard et al. NEJM 1997 337:949

Ragaz et al. NEJM 1997 337:956

Overgaard et al. 1999, 353:1641

ASCO 2001 guidelines-PMRT

Site	Indication
Chest wall	T3, ≥4 LN
Axilla	Incomplete dissection, ECE
IMC	??
SCF	+ve Axilla

Recommendations

- ≥4 LN
- ≥T3
- Chest wall mandatory in PMRT
- SCF in ≥ 4 Axillary LN
- No axillary RT in complete dissection

Insufficient evidence

- T1/T2
- Dose Schedule
- SCF RT in 1-3 Ax LN
- IMC RT
- Sequencing of PMRT, Reconstruction & Systemic therapy

Increased cardiac mortality in left PMRT

- Innocent bystanders like Heart, Lung, LAD, Brachial plexus, ribs get irradiated
- Cardiac volume irradiated correlates with cardiac mortality (3.2 times).
- Lung volume irradiated correlates with functional lung damage (3%).

Gagliardi G, etal, IJROBP, 2000;46:373-381 Gagliardi G, etal, BJR 1996, 69:839-846

Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials

Early Breast Cancer Trialists' Collaborative Group*

Vascular deaths: Proportional excess ratio=1.3, absolute rates 3 fold greater

Anatomy

Simulator Film based planning

1.5cm below the opposite inframammary line

Need for delineation

- To spare the ipsilateral lung
- heart
- Left anterior descending artery
- Brachial plexus injury with axillary RT

How to Simulate?

- Patient supine (<u>+</u> breast board); Flat (CT) couch; Arms overhead.
- Place radio-opaque wire on patients chest wall
- Medially midline
- Laterally –midaxillary line
- Superior- Inferior aspect of clavicular head
- Inferior- 1cm below the c/l Inframammary fold

[CT scan data (<u>+</u> Contrast) transferred to 3D TPS]

How to delineate?

- Contour both lungs
- Contour the heart (exclude great vessels)
- CTV delineation- Anteriorly Skin surface
- Posteriorly- rib –soft tissue interface
- Medially- 1 cm lateral to the midline wire
- Laterally- 1cm medial to the lateral wire

Post mastectomy Radiotherapy of the chest wall: dosimetric comparison of common techniques. Pierce et al IJROBP: 2002;52(5),1220-1230

How and what to delineate?

The issue of scar and bolus...

- Scar should be included
- Drain sites should be included
- Reasons tumor cell entrapped in scar -hypoxic fibrotic region

- Bolus to the scar –Yes (unless lying in tangential beam)
- Bolus to entire chest wallreason – heavy infestation of skin lymphatics
- Issue of junctions and self bolus effect exist
- Greater need in 4-6 MV beams than Telecobalt unit due to greater depth of Dmax

CTV delineation of SCF, IMC, Axillary Levels

Conclusions

Delineation based planning in PMRT is to save the lung, heart, LAD especially in left sided lesions and brachial plexus injury in axillary irradiation.