IMAGE BASED BRACHYTHERAPY FOR CERVICAL CANCER

DR. FIRUZA D.PATEL PROFESSOR

DEPARTMENT OF RADIOTHERAPY
POSTGRADUATE INSTITUTE OF MEDICAL
EDUCATION & RESEARCH, CHANDIGARH.

- Image <u>guided</u> brachytherapy
 - Technique where imaging is used to <u>guide</u> brachytherapy applicator/source placement.
- Image <u>based</u> brachytherapy
 - □ Technique where advanced imaging modalities are used to gain information regarding the volumetric dose distribution.

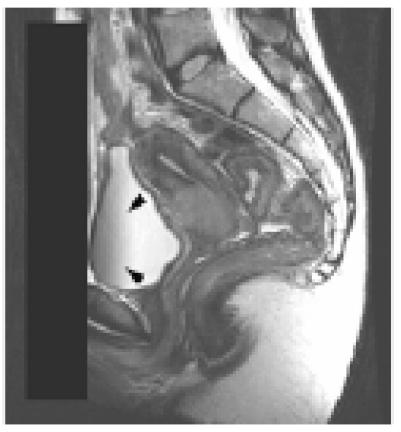
Historically

- Dose prescription & treatment planning have been mainly based on traditional schools using a certain system, including a given technique, loading pattern, & dose rate.
- "Manchester", "Stockholm", "Fletcher/MD Anderson"
- Current practice is to prescribe dose to Point A
- Empiric point, does not reflect dose to tumor, reference is with applicator, is located where dose gradiant is high i.e.about 10%/mm.

- Historically
- Uniform method for reporting ICRU Report 38 (1985)
- Dose be specified in terms of total reference air kerma TRAK
- Reference volume be determined tissue volume encomposed by a reference isodose surface, 60 Gy
- Points for dose assessment to bladder & rectum
- Extended to dose-volume histograms DVH for OARs.
- Compare brachytherapy performed in different institutions.
- Applied only minimally, no correlation with primary cervical tumor control.

- Recently
- 3D & 4D image-based brachytherapy treatment planning & dosimetry has been used for Cancer Cervix.
- Prescribed dose is always related to the target while the actual coverage can be evaluated with the use of DVH parameters
- Shape the spatial dose to conform to the target volume
 - Reduce dose to normal tissues & hence reduce the normal tissue toxicity.
 - Escalate dose to the tumor to produce greater rates of local control




- Imaging modalities used
- Ultrasonography
- Fluroscopy
- Computed tomography CT
 - 3D anatomic relationship of applicator & neighbouring structures
 - Difficult to separate cervical tumor from uterus, rectum & bladder & to ascertain where cervix ends & vagina begins
- MRI T2-weighted images: High signal intensity,
 After ERT: intermediate signal intensity (grey zones)
- PET

- Imaging modalities used
- MRI Scan
 - Superior soft tissue resolution & is the best imaging modality for visualisation of cervical tumor size, volume & extent
 - Distinction of tumor from normal uterus & cervix
 - Definition of parametrial, & vaginal infiltration of disease
 - Visualise the anatomic relationship between applicator & tumor & adequacy of radiation coverage
 - Doses to rectum & bladder can be assessed
 - Multiplanar scanning capabilities-coronal, sagittal & axial

CT SCAN

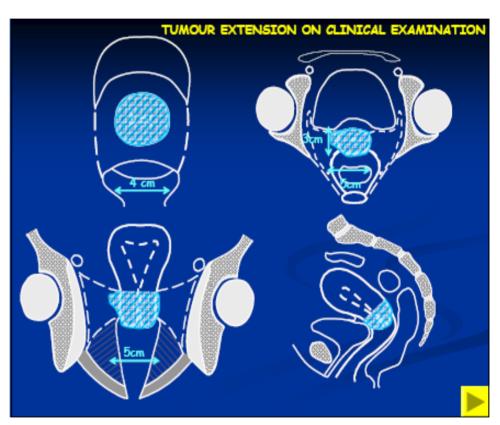
MRI SCAN

- Imaging modalities used
- MRI Scan disadvantages
 - MRI compatible applicator made of nonferromagnetic materials. Titanium & zirconium alloy needles.
 - Bony anatomy not differentiated as well as on CT
 - □ Treatment planning systems use Hounsfield numbers hence they are not able to use MRI scans directly & it is necessary to fuse MRI with CT scans

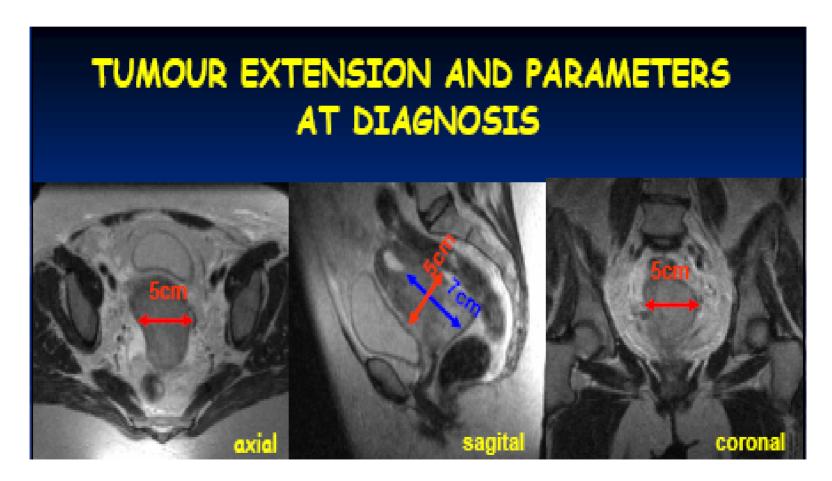
Imaging modalities used

- MRI Scan accuracy
 - Tumor volume
 - Deep stromal invasion
 - Parametrial infiltration
 - Lymph node involvement
 - Overall Staging

- 93%
- 94%
- 87-94%
- 72-93% similar to CT
- 76-89% better than CT,USG, Clinical


Requirements

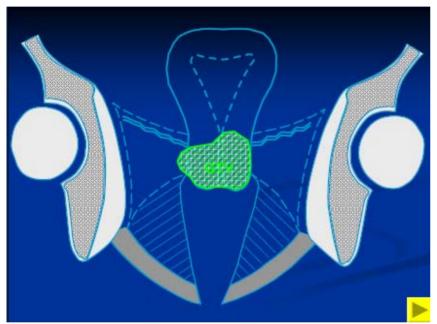
- Imaging
- 'Image-able' & artifact free applicator
- Applicator fixation & immobilization
- Treatment planning system
- Compatible communication protocol-DICOM,so that the treatment planning system can interpret the images
- CT & MRI data sets need to be registered to superimpose one set on another
- Contouring tumor & OARs
- Dosimetry & dose-volume parameters for tumor & OARs



Tumor volume assessment

- First based on Clinical Examination
- Appropriate
 documentation in three dimensions
- Sectional imaging gives information on tumor extension & configuration & its topography

TUMOUR RESPONSE: GOOD


	Volume	Width	Thickness	Height	Distance PSW right	Distance PSW left
Diagnosis: involvement of the right proximal parametrium	88 cm³	5 cm	5 cm	7 cm	4 cm	5 cm
Brachytherapy: minimal residual extension into the right parametrium	9 cm³	3 cm	2 cm	3 cm	5 cm	6 cm

Target Volume

- GTV
 - Includes macroscopic tumor extension as detected by clinical examination (visualisation & palpation) & as visualised on MRI
 - Change of GTVs during treatment –
 - At diagnosis GTV_D
 - At brachytherapy GTV_B

The GTV encompasses the macroscopic tumour extension at time of brachytherapy:

high signal intensity mass(es)

(FSE, T2) in cervix/corpus, parametria, vagina, bladder and rectum

Target definition

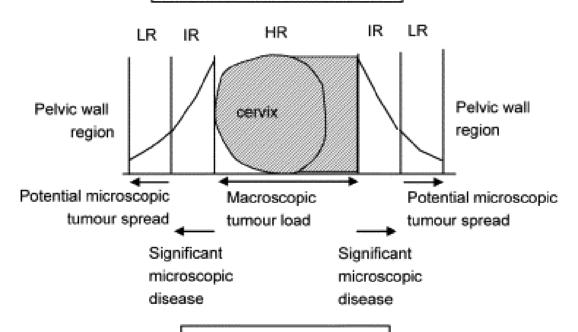
2 CTVs

A first target related to the extent of GTV at time of BT: taking into account tumour extent at diagnosis.

High risk CTV

- Major risk of recurrence because of residual macroscopic tumor
- Intent is to deliver a total dose as high as possible to eradicate all residual macroscopic tumor
- High dose prescribed to this target (80-90+Gy)=dose to point A

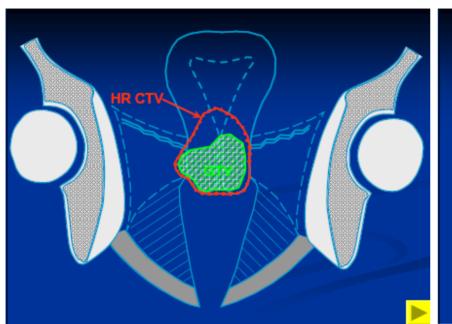
Target definition

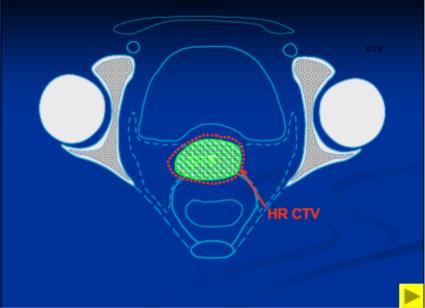

2 CTVs

A second target related to the extent of GTV at diagnosis:

- Intermediate risk CTV
- Major risk of recurrence in areas that initially had macroscopic extent of disease with residual microscopic disease at time of BT
- Intent is to deliver dose appropriate to cure microscopic disease in cervix cancer, which corresponds to a dose of 60Gy

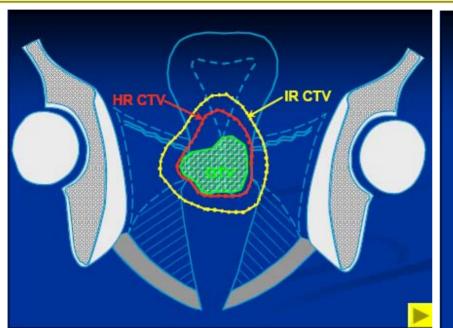
Three different target volumes according to cancer cell density

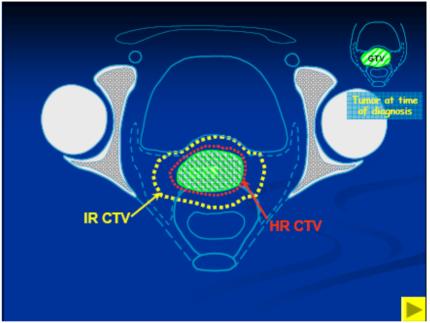



HR: High risk CTV

IR: Intermediate risk CTV

LR: Low risk CTV



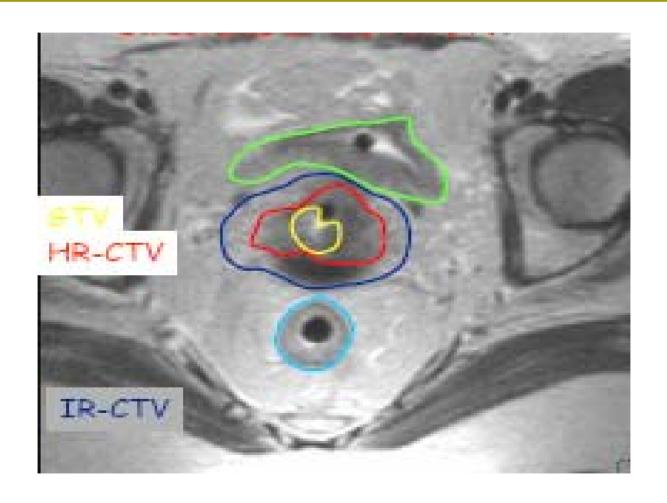

The HR-CTV includes
GTV, whole cervix, and presumed
extracervical tumor extension.

Pathologic residual tissue(s) as
defined by palpable indurations
and/or grey zones in parametria,
uterine corpus, vagina or rectum and
bladder are included in HR-CTV.

No safety margin are added

HR-CTV + the initial tumour extension at diagnosis

IR-CTV encompasses HR-CTV with a safety margin of 5-15 mm.


Amount of safety margin is chosen according to tumour size an location, potential tumour spread, tumour regression and treatment strategy

OARs

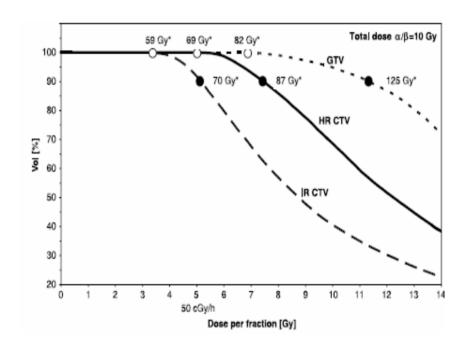
- Contouring organ wall volumes is difficult
- For organ wall volumes upto 2-3 cm³, organ & organ wall contouring lead to almost identical numerical results this allows for organ contouring only
- If larger organ wall volumes are considered organ wall contouring has to be performed
- When assessing the late effects from brachytherapy, small organ (wall) volumes irradiated to a high dose seems to be of major interest.

- Dose prescription
- The prescribed dose is always related to the target.
- The prescription dose is the planned dose to cover this target as completely as possible.
- Coverage of the target can be improved starting from the standard dose prescription & careful adaptation of the loading pattern & dwell times

Cervix Carcinoma

Alain Gerbaulet, Richard Pötter, Christine Haie-Meder

- Dose prescription
- HR-CTV Dose
 - □ Small tumor − **80-85 Gy**
 - □ Large tumor, good response 85-90 Gy
 - □ Large tumor, poor response 90+ Gy
- □ IR-CTV ~ 60 Gy
- V(60 Gy_{EQD2}) plays a role for evaluating the IR CTV
- □ **V(85 Gy_{EQD2})** represents more closely the prescription dose to the **HR CTV**
- For comparison, dose reporting should refer to the prescribed dose to the image-based target & to the traditional system - point A

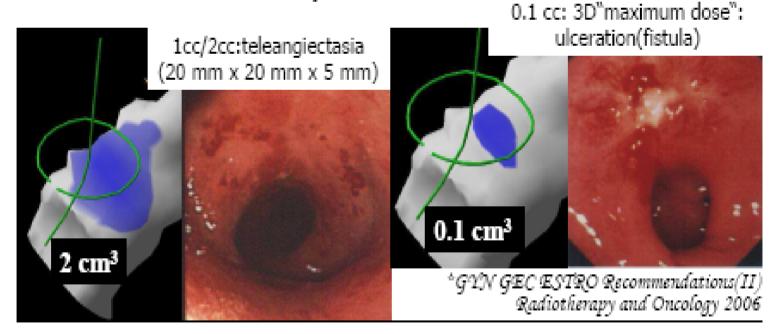

Parameters for dosimetric evaluation GTV/CTV

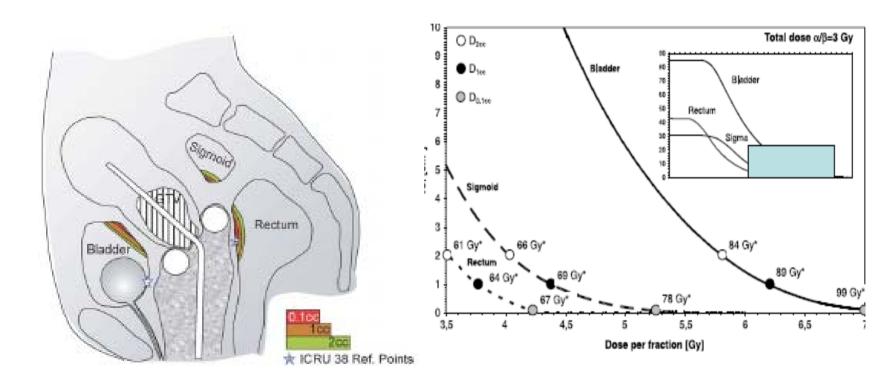
- Prescribed Dose PD
- D100 & D90 minimum dose delivered to 100 & 90% of the volume of interest respectively
- D100 is extremely dependent on target delineation. Due to steep dose gradiants, small spikes in the contour cause large deviations in D100
- D90 is less sensitive to these influences & is therefore considered a more 'stable' parameter
- TRAK
- Point A Dose
- V 100 Volume receiving ≥ 100% of PD
- V150/200 Volume receiving 150%/200% of PD

Dose volume parameters

- Coverage of target volumes can be derived from cumulative DVH analysis
- DVHs for GTV & CTV in I/C brachytherapy have a plateau-100% dose coverage of the volume of interest
- Plateau goes down smoothly indicating decreasing % of dose coverage with increasing dose

OARs


- As there is a rapid dose fall-off near the sources, in particular in adjacent small organ (wall) volumes, dose assessment has to refer to one (or more) defined dose points in these limited volumes
- The minimum dose in the most irradiated tissue volume adjacent to the applicator (0.1,1,2,5cm³) is recommended for recording & reporting
- It is assumed that these volumes are contiguous
- This is wrongly called as the 'maximum dose' to a 2cm³ tissue


CLASSICAL MAX DOSE: in 3D no clinical relevant endpoint

FIXED VOLUME: tolerance dose (total dose)-

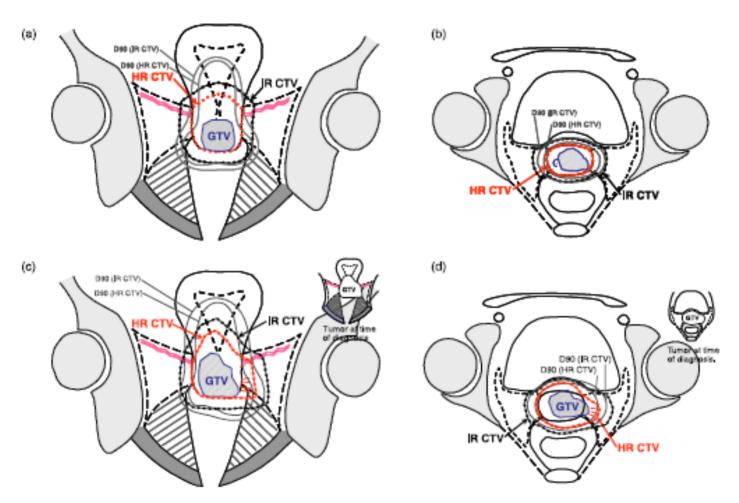
"minimum dose to the most exposed tissue"*

Potter, Radiot & Oncol, 78,2006

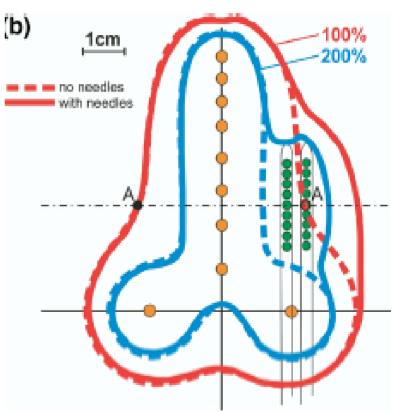
Dose volume constraints

 \square 2 cm³ of rectum & sigmoid <**75** Gy₃

 \square 2 cm³ of bladder < **90 Gy**₃


ullet High risk CTV & D_{90} greater than the PD

 $V_{100} > 90\%$


- Radiobiological modelling of doses:
- Standard brachytherapy dose-rate 50cGy/hr
- Calculate the biologically weighted dose for brachytherapy
- Standard external beam radiotherapy is 200cGy/Fr
- Calculate the biologically weighted dose for external beam
- Add both together to get the Total Biologically weighted Dose for tumor & OAR

Situations requiring combined I/C & I/S

- Unilateral tumor extension exceeding
 - 3.5 cm at level of ring
 - 2.5 cm at level of pt A
 - 2.2 cm at a distance 3-4cm cranial to ring surface
- Tumor extension cannot be covered by symmetrical dose distribution of tandem alone without exceeding dose limits for OAR
- Tumor extension to lower vagina, close to pelvic side wall, posteriorly along ant rectal wall

BALANCE

3-D Image Based

Dose volume relations

in OAR: tolerable effects

3-D Image Based

Dose volume relations

in HR/IR CTV: control of disease

Conclusion

- It is expected that the therapeutic ratio including target coverage & sparing of OARs can be significantly improved, if radiation dose is prescribed to a 3D image-based CTV taking into account dose volume constraints for OARs
- However, prospective use of these recommendations in the clinical context is warranted, to further explore & develop the potential of 3D image-based cervix cancer brachytherapy