#### **ROLE OF RADIATION THERAPY IN NON-SMALL CELL LUNG CANCER**

### DR. S.C. SHARMA PROFESSOR & HEAD



#### DEPARTMENT OF RADIOTHERAPY POSTGRADUATE INSTITUTE OF MEDICAL EDUCATION & RESEARCH, CHANDIGARH

## RADIATION THERAPY IN NON-SMALL CELL LUNG CANCER (NSCLC)

#### **ROLE OF RADIATION THERAPY IN NON-SMALL CELL LUNG CANCER**

Surgery is the treatment of choice for NSCLC.

However, radiation also plays an important role in the management of this dreadful cancer.

#### NON SMALL CELL LUNG CANCER ROLE OF RADIATION

60% of Lung cancer cases require radiation.
45% as initial treatment and 17% for palliation, however,this figure is reverse in our country.

**Radiation is used in following forms in NSCLC** 

AS ADJUVANT

\* Post Operative

\* Pre Operative

**B. PRIMARY RADIATION** 

- \* Radical
- \* Palliative

C. CHEMO-RADIATION

# POST-OPERATIVE RADIATION

#### NON SMALL CELL LUNG CANCER POST-OPERATIVE RADIATION

AIM : 1. To increase local control. 2. To add to the survival. **INDICATIONS:** 1. T2-T3 lesions. 2. Lymphatic involvement. 3. Chest Wall Invasion. 4. Mediastinal Involvement. **5. Superior Sulcus Tumour.** 6. Resection not complete. 7. Unfavourable histology.

DOSE : 50-60 Gys. in 5-6 weeks.

#### **NON SMALL CELL LUNG CANCER** 5 YRS.SURVIVAL WITH POST-OP.RADIATION

| Study                 | Surgery<br>Alone(%) | RT+SUR<br>(%) | Median<br>Dose(Gy) |  |
|-----------------------|---------------------|---------------|--------------------|--|
| 1. Choi, 1980         | 33                  | 42            | 45                 |  |
| 2. Green, 1982        | 33                  | 35            | 50                 |  |
| 3. Kirsh, 1976        | 36                  | 33            | 45                 |  |
| 4. Van Houttee, 1980  | 45                  | 20            | 60                 |  |
| 5. Weiasenburger, 198 | 86 53               | 56            | 50                 |  |

#### NON SMALL CELL LUNG CANCER- RESULTS OF POST-OP.RADIATION

Studies: 1.Port.1998,meta-analysis 2.British Medical Council.1996 3.SEER database,Lally,B,2006

Results :1. No survival advantage in Stage I&II2.Rather lower survival in few studies3.Less recurrences in N2 diseaseCurrently no evidence to support post-operative radiation

**Results may improve with:** 

Linear accelerator beam of 6-10 Mev
 Conventional fraction size of 1.8 -2.0 Gys
 Image based techniques and planning

## PRE-OPERATIVE RADIATION

#### NON-SMALL LUNG CANCER PRE-OPERATIVE RADIATION

INDICATIONS :Stage- I, II & IIIDOSE :20-60 Gys.

PATIENTS DOSE STAGE I & II STAGE-III 

 MULTI INSTITUTIONAL TRIAL

 :
 478

 :
 20 Gys. x 5 Frs.

 :
 No benefit

 :
 3 yrs. Survival 49.4% vs. 28/1%

 5 yrs. Survival 29.2% vs. 15.8%

 (Trakhtenberg, 1988)

## **RADICAL RADIATION**

#### NON SMALL CELL LUNG CANCER ROLE OF RADIATION

Sensitivity :

: NSCLC is a radio responsive but not very radio-sensitive tumour.

- It is moderately sensitive.
- Dose of 60 Gys. or more gives good response.
- 20% 30% can achieve complete local control of disease with small tumor.
- Rest only achieve partial remission.

#### NON SMALL CELL LUNG CANCER RADICAL RADIATION

#### **INDICATIONS**:

- **1. Medically inoperable T1-T3 lesions.**
- 2. Patient refuses surgery.
- 3. Critically located lesion.
- 4. Non-resectable Stage-II & Stage-IIIA tumours.
- 5. Patient with incomplete resection.
- 6. Localized recurrent lung cancer.

#### **REQUIREMENTS:**

K.P. Score > 60%.
 No obstructive symptoms

#### NON SMALL CELL LUNG CANCER CONVENTIONAL RADIATION THERAPY

1. Volume :

Radiologically visible tumour with 2 cm margin all around the tumour. Adjacent lymph nodes and mediastinum included.

2. Fields :

2-3 fields with or without wedge filter depending upon location of the tumour.



#### NON SMALL CELL LUNG CANCER CONVENTIONAL RADIATION THERAPY

**1. Modality :** Linac beam 6-10 MeV or cobalt beam.

**2. Tumour Dose:** Radical – 60-66 Gys.in 6-6<sup>1</sup>/<sub>2</sub> weeks.

3. Dose per Fraction : 1.8 – 2 Gys.

#### NON SMALL CELL LUNG CANCER RESULTS OF RADIATION IN STAGE-I & II

| Dose            | :  | 50 – 60 Gys. |
|-----------------|----|--------------|
| Median Survival | :  | 17 – 20 mo.  |
| 2 Yrs.Survival  | 1: | 30 – 56%     |
| 5 Yrs. Survival | :  | 3 – 32%      |

#### NON SMALL CELL LUNG CANCER RESULTS OF RADIATION THERAPY STAGE-I-II

| Study              | Dose (Gy.) | Median        | Survival |       |
|--------------------|------------|---------------|----------|-------|
|                    |            | Survival (Mo) | 2 Yr.    | 5 Yr. |
| 1. Rosenthal, 1992 | 60         | 18            | 33       | 12    |
| 2. Kayakawa, 1996  | 60-80      |               | 75       | 31    |
| 3. Kaskowitz, 1993 | 63         | 21            | 44       | 22    |
| 4. Zhang, 1989     | 50-70      |               |          | 32    |
| 5. Noordijk, 1988  | 60         | 32            | 56       | 16    |

#### NON SMALL CELL LUNG CANCER RADIATION FOR LOCAL RECURRENCE

| Study           | Dose (Gy.) | Median        | Survival |       |
|-----------------|------------|---------------|----------|-------|
|                 |            | Survival (Mo) | 2 Yr.    | 5 Yr. |
| 1. Green, 1978  | 25-60      | 11            | 10       |       |
| 2. Shaw, 1992   | 40-50      | 14            | 30       | 4     |
| 3. Yano, 1994   |            | 19            | 38       | 8     |
| 4. Emami, 1997  | 50-70      | 8             | 18       | 4     |
| 5. Curran, 1992 | 56         | 12            | 22       |       |

#### NON SMALL CELL LUNG CANCER ALTERED FRACTIONATION REGIMENS

| Regimen       | Fr Size  | Fx/D | Frs No. | <b>Rt Duration</b> | T. Dos | e     | Su   | rvival |
|---------------|----------|------|---------|--------------------|--------|-------|------|--------|
|               | (Gys)    |      |         |                    | (Gys)  | 1 yr. | 2yrs | Median |
| Phase III Ran | domized  |      |         |                    |        |       |      |        |
| CHART         | 1.5      | 3    | 36      | 12Days             | 54     | 63    | 29   | NA     |
| (Saundera,19  | 999)     |      |         |                    |        |       |      |        |
|               |          |      |         |                    |        |       |      |        |
| RT alone      | 2        | 1    | 30      | 42Days             | 60     | -     | 20   | -      |
| Phase II nonr | andomize | be   |         |                    |        |       |      |        |
| HART          | 1.5-1.   |      | 36      | 15Days             | 57.6   | 57    | NA   | 13mo   |

#### NON SMALL CELL LUNG CANCER NEWER RADIATION TECHNIQUES

- **1. 3-Dimentional Conformal Therapy.**
- 2. Intensity Modulated Radiation Therapy.
- 3. IGRT and Gated Radiotherapy.
- 4. Stereotactic Radiotherapy.
- 5. Neutron Therapy.
- 6. Interstitial Brachytherapy.
- 7. Endobronchial Brachytherapy.
- 8. Intra Operative Radiotherapy.
- 9. Proton Therapy

#### **Endobronchial brachytherapy in palliation**



•More than 60% cases have symptoms of endobronchial obstruction: Dyspnea, Cough, Hemoptysis, Obstructive Pneumonia.

 Endobronchial brachytherapy is an effective tool in the palliation of endobronchial symptoms. Response rates 70 – 100% in all published studies.

• A variety of dosage schedules, with or without palliative external radiation has been used successfully. The optimum dose-fractionation is unknown.

#### ENDOBRONCHIAL BRACHYTHEAPY IN NON SMALL CELL LUNG CANCER

#### **ADVANTAGES:**

- It delivers high dose of radiation in short time.
- **Produces quick resolution of endobronchial tumour.**
- Opens up the bronchus and therefore, relieves the symptoms.
- It delivers very small dose of radiation to surrounding structures.

#### **Endobronchial Brachytheapy**

**Dose Schedule** 

Single Treatment

: 8-15 Gy.

Fractionated Treatment : 6-8 Gy. X 2-3 Frs. alongwith Ext.Radiation





## **Results of Endobronchial Brachythearpy**

| Author         | Schedule                | Cough | Dysp. | Haemopt. | Pneum | nonia Toxicity |
|----------------|-------------------------|-------|-------|----------|-------|----------------|
| Speiser and    | 5-10 Gy x 3# ±          | 86%   | 85%   | 99%      | 99%   | 7.30%          |
| Spratling      | XRT                     |       |       |          |       |                |
| Chang et al    | 7 Gy x 3 # ±            | 87%   | 79%   | 95%      | 88%   | 4%             |
|                | XRT                     |       |       |          |       |                |
| Gollins et al  | 15-20Gy x 1#            | 60%   | 60%   | 88%      | 50%   | 7.90%          |
| Muto et al     | 5-10 Gy x 1-3#<br>+ XRT | 90%   | 82%   | 99%      | 90%   | 7%             |
| P.G.I. Results | 8-15 Gy x 1-2#<br>± XRT | 91%   | 83%   | 94%      | 67%   | 6%             |
|                |                         |       |       |          |       |                |

**Response rate comp published studies.** 

Mallick I. et.al.2004

Incidence of fatal hemoptysis is low.

#### **3-D CRT & IMRT IN LUNG CANCER**

**Goal:** 

To increase dose delivery to tumour To minimize dose to normal tissues.

**Advantages** 

- **1. Better conformity of radiation dose to the tumour.**
- 2. Sparing of all the vital structures around tumour.
- 3. Escalation of dose is possible.
- 4. Better control of disease.
- 5. Reduced morbidity.

## **3-D CRT & IMRT IN LUNG CANCER**

#### **Advantages:**

 Multiple targets can be treated effectively.
 Best for patient with prior radiation therapy.
 Tumour and normal tissue delineation.
 Accurate dose calculations.
 Ability to manipulate beam geometry
 Fusion of different image modalities.
 IMRT offers benefit of dose escalation without causing greater toxic effects to the surrounding normal tissues.

#### **3-D CRT & IMRT IN LUNG CANCER**









### 3-D CRT & IMRT IN LUNG CANCER TREATMENT PLANNING







#### 3-D CRT & IMRT IN LUNG CANCER TREATMENT PLANNING











#### NON SMALL CELL LUNG CANCER RADICAL RADIATION

#### **SELECTION CRITERIA FOR IMRT:**

1.Tumour located in the superior sulcus.2.Tumour close to Esophagus and Spinal cord.3.Tumour with lymphnode positivity.

Early stage small mobile tumour may not be a good candidate for IMRT unless motion mitigation techniques are used-gated therapy.

## **Conformal radiation therapy in NSCLC**

| Author       | PTS | Stage   | Dose<br>Gys | Median Sur.<br>Mos | 2 Yrs Survival<br>% |
|--------------|-----|---------|-------------|--------------------|---------------------|
| Rosenman,01  | 62  | IIIA/B  | 60-74       | 24                 | 50                  |
| Armstrong,00 | 28  | I/II;4  | 52-72       | 15.7               | 32                  |
|              |     | IIIA;12 | 70          |                    |                     |
|              |     | IIIB;12 |             |                    |                     |
| Sibley,95    | 37  | IIIA;18 | 60-70       | 19.5               | 37                  |
|              |     | IIIB;19 | 66          |                    |                     |
| Graham,96    | 70  | I;15    | 60-74       | 16.5               | 33                  |
|              |     | II;7    | 69          |                    |                     |
|              |     | IIIA;36 |             |                    |                     |
|              |     | IIIB;12 |             |                    |                     |

#### NON SMALL CELL LUNG CANCER RADICAL RADIATION

#### **Image Guided RadiationTherapy-IGRT:**

It is defined as the use of modern imaging modalities specially those incorporating functional and biological informations

1. to augumernt targert delineation

**2. use of imaging to adjust to target motion and positional uncertainty- repiratory gated therapy** 

**3. potential to adopt treatment to tumour response-4D** adaptive therapy.

### **IMAGE GUIDED RADIATION THERAPY**

#### EQUIPMENT REQUIRED



**CT-SCAN** 

Linac with on Board imaging Tomotherapy

**MRI** 



PET-CT

Cyber knife





## PROTON BEAM THERAPY IN NON – SMALL CELL CARCINOMA LUNG

- 1. Proton beam has a Bragg peak which can be modulated to deliver uniform dose to tumor site while sparing surrounding normal tissues.
- 2. It reduces dose to Esophagus and Heart.
- 3. Higher dose of radiation-87-88 Grays can be delivered compared to only 66 Gys with conventional radiation which can increase control rate.
- 4. Importance of respiratory motions has to be taken into account and hence IGRT with gating techniques is to be used with proton beam.
- 5. Proton therapy is still under investigation,

## STEREOTACTIC BODY RADIATION THERAPY IN NON-SMALL CELL CARCINOMA LUNG

| Stereotactic radiosu<br>Stage -I | rgery or radiother   | rapy is being used in NSCLC in |
|----------------------------------|----------------------|--------------------------------|
|                                  | entric Trial: Onisl  | ni et al 2004                  |
| Tot                              | tal Cases : 245 (A   | All TINOMO)                    |
| Dos                              | se: 18-75 Gys. in 1  | -22 Frs.                       |
|                                  | <b>BED- 108 Gys.</b> | ( 57-180 Gys.)                 |
| <b>Results:</b> Radiation        | morbidity- 6% on     | ly                             |
| BED                              | Local Control        | <b>Over Survival</b>           |
| 100 Gys                          | 81%                  | 88.4%                          |
| 100Gys                           | 26.4%                | <b>69.4%</b>                   |
| <b>Proposed Studies:</b>         |                      |                                |

1. RTOG: 60 Gys in 3Frs. In 2 Wks.

2. International Association of Study of Lung Cancer has proposed a randomised trial between SBRT and Surgery in stage I.
## NON SMALL CELL LUNG CANCER RADICAL RADIATION

## CONCLUSIONS

- 1. Radical radiation plays very limited role in the management of lung cancer.
- 2. The results of radical radiation for early stages are poor compared to radical surgery.
- 3. However, it is the only treatment for those patients who are not fit for or refuses surgery.
- 4. Endobronchial brachytherapy has limited role in the radical treatment, however it is good for palliation.
- 5. 3-D CRT, IMRT, IGRT, SRS & SRT are treatment techniques which may give better results, are being used with increasing frequency and may add to the better control.

# **CHEMO-RADIATION**

## **NON SMALL CELL LUNG CANCER**

### **CHEMO-RADIATION**

#### RATIONALE

- \* Synergestic effect leading to better control.
- \* To reduce distant metastatic rate.

#### CHEMOTHERAPY SEQUENCE

- 1. Neo-adjuvant
- 2. Sequential
- 3. Concurrent

## **NON SMALL CELL LUNG CANCER**

#### **CHEMO-RADIATION**

<u>AIM</u> :

1. To enhance local control. 2. To increase survival. INDICATIONS :

1. T1-4 and N0-3 lesions.

**<u>RESULTS</u>** : Equivocal

### NON SMALL CELL LUNG CANCER DRUG USED

**Cisplatin** Etoposide Carboplatin 5-FU

Gemcite Methotrexate

Bleocin Paclitaxel Docetaxel

## NON SMALL CELL LUNG CANCER DRUG REGIMENS USED

- 1. Cisplatin :35mg/m2 weekly
- 2. Cisplatin

:4-6mg/m2 daily

- 3. Paclitaxel +Carboplatin
- 5. Cisplatin +Etoposide

4.

:175mg/m2 d1 : 80mg/m2 d1 Repeate every 3 wks. :80mg/m2 d1 :100mg/m2 d1-3 Repeate every 3 wks

## NON SMALL CELL LUNG CANCER RESULTS OF CT VS. CT+RT

| Study       |       | Dose<br>(Gy.) | Median<br>Sur.(Wk) | Long Term<br>Survival | Chest<br>Relapse(%) |
|-------------|-------|---------------|--------------------|-----------------------|---------------------|
| Perez, 1980 | СТ    |               | 49                 | 19                    | 52                  |
|             | CT+RT | 40            | 60                 | 28                    | 30                  |
| Fox, 1981   | СТ    |               | 62                 | 4                     | 68                  |
|             | CT+RT | 40            | 68                 | 25                    | 32                  |
| Looper,1984 | СТ    |               | 43                 | 14                    | 69                  |
|             | CT+RT | 35            | 60                 | 29                    | 26                  |
| Bunn, 1987  | СТ    |               | 47                 | 12                    | 67                  |
|             | CT+RT | 40            | 64                 | 28                    | 29                  |

## NON SMALL CELL LUNG CANCER RESULTS OF NEOADJUVANT CT IN STAGE-III

| Study        | ССТ     | PTS. | PCR% | Median<br>Sur.(Mo) | 3 Yr.<br>Sur.(%) |
|--------------|---------|------|------|--------------------|------------------|
| Takita,1986  | Various | 29   | X    | 30.5               | 30               |
| Pisters,1990 | MP±P    | 73   |      | 19                 | 26               |
| Burkes,1992  | MVP     | 39   | 8    | 18.6               | 2.6              |
| Martini,1993 | MVP     | 13   | 14   | 19                 | 28               |
| Darwish,1993 | EP      | 46   | 9    | 24.5               | 30               |

## NON SMALL CELL LUNG CANCER RESULTS OF NEOADJUVANT CT +RT IN STAGE-III

| Study               | ССТ         | PTS. | RR% | Median<br>Sur.(Mo) | 5Yr.<br>Sur.(%)            |
|---------------------|-------------|------|-----|--------------------|----------------------------|
| 1.SWOG9504<br>2006  | CP+VP16,DOC | 83   | 67  | 26                 | 29                         |
| 2.France<br>2005    | CP+VP-16    | 101  | 54  | 15                 | 14                         |
| 3.CALGB,USA<br>2007 | CARBO+PACLI | 184  | NR  | 14                 | ( 4 Yrs)<br>31<br>( 2 Yrs) |

**RT dose: 60- 61 Gys. In all studies** 

|          | NON SMALL CELL LUNG CANCER<br>RESULTS OF NEOADJUVANT CT +RT+SR IN |                       |      |         |                                                                         |                 |  |  |
|----------|-------------------------------------------------------------------|-----------------------|------|---------|-------------------------------------------------------------------------|-----------------|--|--|
| <b>-</b> |                                                                   | 1217                  |      | AGE-III | \$294 T. A. F. E. T. T. T. T. T. J. |                 |  |  |
|          | Study                                                             | ССТ                   | PTS. | RR%     | Median<br>Sur.(Mo)                                                      | 3Yr.<br>Sur.(%) |  |  |
| }        | Ge rmany<br>2008                                                  | CP+VP16               | 69   | 47      | 16                                                                      | 28              |  |  |
|          | Rome<br>2003                                                      | CP+5FU                | 40   | 54      | 18                                                                      | 23              |  |  |
|          | SAKK<br>2009(Swi                                                  | CP+DOCE<br>itzerland) | 46   | 59      | 29                                                                      | 40              |  |  |

| Study        |       | Dose<br>(Gy.) | Median<br>Survival (mo) |    | vival<br>5 Yr |
|--------------|-------|---------------|-------------------------|----|---------------|
| Trovo, 1992  | RT    | 45            | 11                      | 20 |               |
|              | CT+RT | 301           | 10                      | 18 |               |
| Dillman,1990 | RT    | 60            | 9                       | 13 | 7             |
|              | CT+RT | 60            | 14                      | 26 | 19            |
| Morton,1988  | RT    | 60            | 9                       | 12 | 7             |
|              | CT+RT | 60            | 10                      | 23 | 5             |

## NON SMALL CELL LUNG CANCER LOCALLY ADVANCED - RESULTS OF CONCURRENT CT+RT

|                 | RT       | CT+RT     |
|-----------------|----------|-----------|
| Median Survival | 8-11 mo. | 11-26 mo. |
| 2 Yrs.Survival  | 13-25%   | 20-40%    |
| 5 Yrs. Survival | 0%       | 2-16%     |

## NON SMALL CELL LUNG CANCER CONCURRENT CT+RT Vs. RT RESULTS IN LOCALLY ADVANCED

| Study                |       | Dose  | Median        | Su    | rvival |
|----------------------|-------|-------|---------------|-------|--------|
|                      |       | (Gy.) | Survival (mo) | 2 Yr. | 5 Yr.  |
| <b>Trovo</b> , 1992  | RT    | 45    | 10            | 20    |        |
|                      | CT+RT | 45    | 10            | 20    |        |
| Jeremic,1995         | RT    | 65    | 8             | 25    | 5      |
|                      | CT+RT | 45    | 18            | 35    | 21     |
| <b>Blanke</b> , 1995 | RT    | 60-65 | 11            | 13    | 2      |
|                      | CT+RT | 60-65 | 10            | 18    | 5      |
| Lee, 1994            | CT+RT | 69    | 19            | 35    |        |

| Study         | СТ | PTS. | Median | 2 Yr.Survival |
|---------------|----|------|--------|---------------|
| Soresi, 1998  |    | 50   | 11.0   | 25            |
|               | СР | 45   | 16.0   | 40            |
| Trovo, 1992   |    | 88   | 10.3   | 20            |
| ,             | СР | 85   | 9.3    | 20            |
| Blanke, 1995  |    | 111  | 11.5   | 13            |
|               | СР | 104  | 10.6   | 18            |
|               |    |      |        |               |
| Jeremic, 1995 |    | 61   | 8      | 25            |

# RADIATION VS RADIATION + DAILY CHEMOTHERAPY

| Author        | pts.  | Median Survival<br>Mos | 2 Yrs Surv.<br>% | 5 Yrs. Surv.<br>% |
|---------------|-------|------------------------|------------------|-------------------|
| Schaake-Konir | 1g,92 |                        |                  |                   |
| RT            | 210   | 12                     | 13               | 2                 |
| RT+P          |       | 12                     | 26               | 10                |
| Trovo,92      |       |                        |                  |                   |
| RT            | 146   | 10                     | 14               | _                 |
| RT+P          |       | 10                     | 14               | _                 |
| Jeremic,96    |       |                        |                  |                   |
| RT            | 135   | 14                     | 26               | 9                 |
| RT+EC         | 2     | 22                     | 43               | 23                |

# NON SMALL CELL LUNG CANCER RESULTS OF CONCURRENT CHEMO-RADIATION

| Study          | PTS. |      | T Dose<br>Gys) | Media<br>(Mo.) | Acturial.Survival<br>%(2-3Yrs.) |
|----------------|------|------|----------------|----------------|---------------------------------|
| • Furuse,99    | 314  | MVP  | 56 SE          | 13             | 9                               |
| •              |      |      | 56 CU          | 17             | 19                              |
| • Curran,00    | 400  | VP   | 63 SE          | 14             | 18                              |
| •              |      |      | 63CU           | 17             | 26                              |
| • GLOT, 01     | 212  | NP   | 66SE           | 13.9           | 24                              |
| •              |      | PE/N | P 66CU         | 15.6           | 36                              |
| • Zatloukal,02 | 102  | NP   | <b>60SE</b>    | 13             | _                               |
| •              |      |      | 60 CU          | 20.4           |                                 |
| • LAMP,02      | 178  | ТС   | 63 SE          | 13             | 31                              |
| •              |      |      | 63CU           | 17.2           | 35                              |

## NON SMALL CELL LUNG CANCER RESULTS OF CONCURRENT CHEMO-RADIATION

#### **P.G.I. EXPERIENCE**

| Response | Chemo-Radiotherapy | Radiotherapy    |
|----------|--------------------|-----------------|
|          | (n-15)             | (n-15)          |
| CR       | 4 (20%)            | 6(40%)          |
| PR       | 9 (60%)            | 9(60%)          |
| SD       | 2 (13%)            | 0               |
|          | Yaday              | B.S. etal. 2004 |

## NON SMALL CELL LUNG CANCER CHEMO-RADIATION

## CONCLUSION

- 1. Chemo-radiation has shown equivocal results.
- 2. Neo-adjuvant and sequential chemotherapy is of little benefit.
- 3. Concurrent radiation have shown some promise and and considered to be standard of care for locally advanced lung cancer.

# RADIATION IN SMALL CELL LUNG CANCER( SCLC )

Chemotherapy is treatment of choice for small cell lung cancer but radiation also plays an important role in its management

## **Localized Disease :**

Chemotherapy is the treatment of choice, however, addition of radiation adds both to the local control and the survival.

Two Meta-analysis (Pignon,1992 & Ward 1992) have shown that

- 3 year survival benefit is 5% (14.3% Vs. 8.9%)
- Improved local control 48% Vs. 23%

**Timing of Radiation** : Early radiation is more beneficial than late radiation. Ideally radiation should be added in the 1<sup>st</sup> week following chemotherapy.

| Study           | Sta      | rt Time       | 5 yr. Survival (%) |      |  |
|-----------------|----------|---------------|--------------------|------|--|
|                 | Early (V | Vk) Late (Wk) | Early              | Late |  |
| CALGB , 1987    | 1        | 9             | 6.6                | 12.8 |  |
|                 | 1&3      | 18 & 23       |                    |      |  |
| Hellenic, 2001  | 1        | 9             | 22.0               | 13.0 |  |
| NCIC, 1993      | 3        | 15            | 22.0               | 13.0 |  |
| Yogoslavia,1997 | 1        | 6             | 30.0               | 15.0 |  |
| JCOG, 2002      | 1        | 15            | 23.7               | 18.3 |  |

**Dose of Radiation :** 

Range of dose used: 25-65 Gys.Optimal dose: 60-65 Gys.Local control is increased with dosewith 30 Gy.: 21 %with 50 Gy.: 67%

Altered fractionation regimens has also been tried, but no addition benefit.

**Prophylactic Cranial Irradiation (PCI) :** 

- \* Upto 50% developed brain metastasis within 3 years.
- \* PCI has significantly reduced the mortality
- \* Neuro-toxicity is of concern
- \* Optimal dose not established but requires more than 20 Gy.for good control.
- \* PCI should not be used concurrently with chemotherapy as it increases neurocognitive dysfunction.

#### CONCLUSIONS

- 1. Radiation plays an important role in the management of localized SCLC.
- 2. It significantly adds to the local control.
- 3. It also adds to the survival.
- 4. PCI reduces the mortality significantly and therefore, should be considered in all cases.

## NON SMALL CELL LUNG CANCER PALLIATIVE -RADIATION

## <u>AIM</u> :

- To control symptoms.
- To improve quality of life.

## **INDICATIONS**:

- Advance local disease with pressure effects.
- Superior vena caval syndrome.
- Bone metastasis
- Soft tissue metastasis
- Brain Metastasis
- Spinal Metastasis

#### Dose :

- 25-30 Gys. x 10 F.
- 20 Gys. x 5 F.
- 8 Gys. x 1 F.

## NON SMALL CELL LUNG CANCER RADIATION TOXICITY

- 1. Pulmonary toxicity
  - Pneumonitis
  - Pulmonary fibrosis.
- 2. Esophageal toxicity
  - Esophagitis Grade-I-III
- 3. Radiation Dermatitis

## NON SMALL CELL LUNG CANCER RADIATION TOXICITY

#### 4. Neurotoxicity

- Lhermitt's Syndrome
- Myelitis
- Myelopathy
- 5. Cardiac toxicity
  - Pericarditis
  - Myocardial Ischaemia
  - Pericardial effusion
- **NOTE : Toxicity is dose related** 
  - Use of chemotherapy enhance toxicity.

## NON SMALL CELL LUNG CANCER

## **TOXICITY Vs. RADIATION DOSE**

| Toxicity                | 35-40<br>(Gy.) | 50-60<br>(Gy.) | 60 or More<br>(Gy.) |
|-------------------------|----------------|----------------|---------------------|
| 1. Pneumonitis          | 2%             | 4.4%           | 4.8%                |
| 2. Pulmonary fibrosis   | 2%             | 3.4%           | 4.8%                |
| 3. Esophagitis          | 1%             | 1.9%           | 1.6%                |
| 4. Esophageal stricture | 0.1%           | 0.2%           | 1.2%                |
| 5. Myelopathy           | 0%             | 0%             | 1%                  |

## **NON SMALL CELL LUNG CANCER**

## **CONCLUSIONS**

- 1. Radiation plays an important role in the management of Non-small cell lung cancer.
- 2. 80-90% of patients need radiation in one form or the other.
- 3. Radiation is curative in small number of patients who are not suitable for surgery.
- 4. It is useful as adjuvant to surgery in improving local control and with little effect on survival.

### NON SMALL CELL LUNG CANCER CONCLUSIONS

- 5. It is the only modality for palliation of this disease.
- Various innovations in radiation therapy has not led to desired improvement in results of this disease as expected.
- 7. Radiation when combined with chemotherapy results in better local control but only small effect on overall survival.
- 8. Radiation also adds to the local control and the survival in small cell lung cancer.

