Brain stem glioma

- Insidious/sudden onset
- Cranial nerve palsies
- Long tract signs (hemiparesis)
- Cerebellar signs (ataxia)

Long history – better prognosis
Diffuse pontine tumours

Major therapeutic challenge

- Typically present with short history
- Surgery (including biopsy) not feasible
- Most are fibrillary, but on autopsy high-grade
- Direct RT in view of typical clinico-radiological picture
- MRS/perfusion/PET could be complementary
Hyperfractionated RT
POG #9239:

Arm 1: 66 pts
54Gy/1.8
+ Cisplatin 100mg/m² (120hr cont. infusion)

Arm 2: 64 pts
HFT: 70.2Gy/1.17Gy BID
+ Cisplatin 100mg/m² (120hr cont. infusion)

132 pts between 6/92 and 3/96
randomized

Mandell IJORB; 1999: 43(5)
TMH RT + TMZ study; phase II design

Little encouraging; await final results

Jalali NeuroOncology 2006; 2007;9 (2):189
Study design

Phase II Study; TMC IRB Cleared

Investigator initiated

Clinicoradiologically consistent diffuse intrinsic pontine glioma

Biopsy wherever possible but not mandatory

RT dose: 54 Gy/30#/6weeks

Concurrent TMZ with RT: 75mg/m²; Day 1 - Day 42

Adjuvant TMZ: 200 mg/m² Day 1- 5; 4 weekly

Max: 12 cycles of adjuvant TMZ
Detailed Imaging Protocol

- MRI Brain plain+contrast
- MRI Spine
- MR Spectroscopy
- MR Perfusion
- FDG PET Scan
Survival and events

<table>
<thead>
<tr>
<th>Survival Duration</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean overall Survival</td>
<td>11.87 mo</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>9.15 mo</td>
<td></td>
</tr>
<tr>
<td>> 6 months Survival</td>
<td>16 (80%)</td>
<td></td>
</tr>
<tr>
<td>> 9 months Survival</td>
<td>10 (50%)</td>
<td></td>
</tr>
<tr>
<td>> 1 year Survival</td>
<td>07 (35%)</td>
<td></td>
</tr>
<tr>
<td>> 18 months Survival</td>
<td>02 (20%)</td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>01 (5%)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>19 (95%)</td>
<td></td>
</tr>
<tr>
<td>Death due to progression</td>
<td>19 (100%)</td>
<td></td>
</tr>
<tr>
<td>Death with spinal metastasis</td>
<td>03 (15%)</td>
<td></td>
</tr>
</tbody>
</table>

- Thrombocytopenia Gr-III/IV: 03
- Vomiting, Grade-III: 03
- Hospitalization: 06

Jalali et al EANO 2008
RT+TMZ in DIPG

CLINICAL INVESTIGATION

PROSPECTIVE EVALUATION OF RADIOTHERAPY WITH CONCURRENT AND ADJUVANT TEMOZOLOMIDE IN CHILDREN WITH NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA

Rakesh Jalali, M.D.,* Nirmal Raut, M.D.,* Brijesh Arora, D.M.,† Tejpal Gupta, M.D.,* Debnarayan Dutta, M.D.,* Anusheel Munshi, M.D.,* Rajiv Sarin, F.R.C.R.,* and Purna Kurkure, M.D.†

*Department of Radiation Oncology; and †Medical Oncology, Division of Pediatric Oncology, Tata Memorial Centre, Mumbai, India

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameters</th>
<th>Mean OS (mo)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR Perfusion</td>
<td>Hyperperfusion</td>
<td>8.87</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>Hypoperfusion</td>
<td>15.10</td>
<td></td>
</tr>
<tr>
<td>Diagnosis with MRI, MRS & Perfusion scan</td>
<td>High grade</td>
<td>6.8</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Low grade</td>
<td>15.14</td>
<td></td>
</tr>
<tr>
<td>Histopathological diagnosis</td>
<td>Grade-III</td>
<td>7.05</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>Grade I/II</td>
<td>14.19</td>
<td></td>
</tr>
<tr>
<td>Clinical Response</td>
<td>Partial / No response</td>
<td>8.23</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>Significant response</td>
<td>13.31</td>
<td></td>
</tr>
<tr>
<td>MRI Response</td>
<td>No / minimal response</td>
<td>11.63</td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td>Partial response</td>
<td>7.21</td>
<td></td>
</tr>
<tr>
<td>PET Response</td>
<td>No/ partial response</td>
<td>14.59</td>
<td>0.966</td>
</tr>
<tr>
<td></td>
<td>Complete response</td>
<td>13.1</td>
<td></td>
</tr>
</tbody>
</table>
Ependymoma

- 10% of all childhood CNS tumours
- 90% are intracranial; 2/3 within the posterior fossa
- 50% of pts are < 5yrs old, 25% are less than 2
- Difficult to treat, perplexing tumours
Epidemiology

- Third most common CNS tumor in children
- 12% of childhood brain tumours
- Annual Incidence rates vary between 2-4 per million.
- Asia: <2 per million
- Scandinavian countries: >4 per million
- TMH Data 2006: 2.4% of all CNS tumors.
- 46 patients were registered with median age of 18.5 yrs.
Localization

Infratentorial 60% Spinal 25% Supratentorial 15%

Parenchymal 50% Intraventricular 50%

Incidence of spinal seeding:
Supratentorial tumors- 1.6%
Infratentorial tumors- 9.7%
High grade tumors- 8.4- 20%
Low grade tumors- 2-4.5%

Lateral Ventricle IIIrd Ventricle
Surgery treatment of choice and the most important prognostic factor

Gross tumour resection (GTR) - 50-75% long term control

Usually grow in highly specialized areas of CNS.

Van Veelan JNS 2002
Schild IJROBP 1998
Surgery

Frequency of complete resections higher in surgical series than in RT series

25-93% -Supratentorial.
35-72% for Infratentorial

• Need to classify patients on the basis of residual tumour as in medulloblastoma.

• Need for second surgery if gross total resection not performed at the first attempt.

• Although gross resection is the most important prognostic factor, cranial nerves should not be sacrificed and caution exercised near the brainstem

• Newer approaches being tried

• Preoperative chemotherapy being evaluated in current Children Oncology group study.
Radiotherapy

- No randomised trial of RT vs. no RT, but large data about efficacy of RT
- Craniospinal RT (CSI) - in 1970’s and 80’s, but does not influence local control/survival.
- Present recommendations- local RT (even in anaplastic)
- CSI – if spinal mets (CSF or MRI)
- Unresolved questions – a) RT in completely resected tumours
 b) can we avoid RT in very young children

Merchant IJROBP 2002;53:51-7
Vanuytsel IJROBP 1992;23:313-9
Radiotherapy

- Traditionally post fossa irradiation, cover inferiorly upto C3-C4

- Local RT = GTV + margin (2 cms)

- Conformal (3D CRT, Stereotactic RT with lesser margins)
Stereotactic conformal RT attractive option
minimise treatment related toxicity; dose escalation
6 field noncoplanar technique the most optimal

Murthy Radioth. & Oncol 2003;67:191-8
RT1 (St Jude’s) Study

- Majority of the patients were younger - >60%
- No difference in PFS between younger than 3 yrs and older patients
- No difference between Infratentorial and supratentorial lesions
- PFS better among patients without chemotherapy than with chemotherapy.
- Excellent functional outcomes for the patients younger than 3 years.
- Efficacy of Conformal techniques
Chemotherapy

- Role unknown
 95% of pediatric ependymomas express P glycoprotein.
 75% of them express MDR1 transcripts

- Several disappointing phase II studies

- Randomised trial of RT Vs RT + adj V, CCNU & P – no benefit (MPO 1996;27:8-14)

- CCG trial – V, CCNU, P Vs 8-in-1 chemo: no difference (JNS 1999;88:695-03)

- FSOP study- dismal 22% 4 yr PFS with chemo alone

All radiotherapy deferral strategies have been more or less abandoned in North America after RT-1 study
Medulloblastoma

- Commonest malignant brain tumor in children
- 20-25% of all childhood brain tumors
- Belongs to family of small blue RCT
- Median age at presentation: 5-8 years
- High propensity of CSF dissemination (20-30%)
- Current standard of care: Maximal safe resection followed by adjuvant radiation therapy +/- chemotherapy
Medulloblastoma

Risk categorisation

Low/average risk
- no/minimal residual
- post op scan <1.5 cc
- M0 disease
- spinal MR/CSF
- age > 3 years

High risk (RT + CT)
“In the course of our growing acquaintance with these baffling tumours, we suspected from their peculiar cytology that they might be susceptible to radiation and the first of the cases so treated both by the X-rays and radium was in December, 1919. Here at least was a new therapeutic recourse and we began with renewed encouragement to attack them with renewed vigour”

Harvey Cushing, 1930
Radiation therapy in medulloblastoma

- central in the management
- relatively radiosensitive tumours
- volume of RT important - entire leptomeningeal axis
- planning of RT very careful and meticulous
- timing of RT - early imp.
CRANIOSPINAL IRRADIATION (CSI) - phase I

Dose: 35 Gy/21 fractions/4 weeks
23.4 Gy CSI plus chemo in avg risk
CSI Technique

Rotate the couch (around 6° and collimator to match spinal field)
Posterior fossa boost - phase II

Dose: 20 Gy/10-12 fractions

total dose to the primary site: 55 Gy
RT planning

- Direct impact on disease control and toxicity
- 20-45% failures inadequate subarachnoid (cribriform plate) coverage in subfrontal/temporal regions (*Miralbell IJROBP 1997*)
- Prospective series under QA programme shows 10-12% inadequate irradiation (*Kortmann IJROBP 1997*)
Long term results

Avg/low risk
- disease free survival: 50% to 90%
- overall survival: 50% to 80% (~ 70%)

high risk
- disease free survival: 20% to 80%
- overall survival: 20% to 60% (~ 50%)
Supine CSI

Munshi and Jalali Med Dosimetry 2008
Data with reduced dose CSI (23.4 Gy+boost) plus Chemo

Cognitive function may be better but not proven conclusively

Packer: JCO 2006
IMRT_TOMO for CSI investigational
Long Term IQ with different volume & dose of RT

Only post fossa, no CSI CSI-25 Gy CSI-35 Gy

Grill IJROBP 1999
Hyperfractionated CSI/RT

Table 2. Acute toxicities observed during radiotherapy

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets</td>
<td>1</td>
<td>1</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>11</td>
<td>3</td>
<td>14 (29)</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>2</td>
<td>0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Skin</td>
<td>3</td>
<td>3</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>Mucosa</td>
<td>0</td>
<td>0</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Fig. 1. Overall survival distribution (Kaplan-Meier method, 48 months)
Hyperfractionated RT for CSI

Ongoing trial in TMC: data accrual including cognition

PI: T Gupta
Ototoxicity: Platinum + RT

Modern RT minimises the effect of Chemotherapy

Huang IJROBP 2004
Huang IJROBP 2002
Protons/IMRT for CSI

- Be cautious about protons
- Risk of partial vertebra irradiation
- Cardiac, gut, lungs etc not an issue
- Real issue: cognition and endocrine- no effect with protons
- Neutrons, low dose bath with IMRT, Tomotherapy: to be careful
High-risk medulloblastoma

CSI for high-risk disease
(age <3 yrs, M+ status, and residual >1.5 cm2)
CHEMOTHERAPY essential

• Standard dose CSI: 35-36 Gy/21-20#/4 weeks @ 1.67-1.8 Gy/#
• Higher dose spinal RT: 39.6 Gy/22#/4.5 weeks @1.8 Gy/#

Boost for high-risk disease
• Whole posterior fossa boost: 19.8 Gy/11#/2 weeks
• Boost for gross focal spinal deposit: 7.2-9 Gy/4-5#/1 week
Concurrent chemo+RT (CRT)

- Treatment naïve patients with confirmed diagnoses of high risk PCET, > 3 yrs & < 22 yrs accrued since July 2004

- Surgery is followed by CRT within 6 wks of surgery. The CRT includes craniospinal radiation (35Gy/21#) with local tumor bed boost 19.8 Gy/11# along with carboplatin 35mg/m2/day given 5 days a week for 15 doses (during first 3 wks.)

- CRT followed by 6 cycles of maintenance chemotherapy at 4 weekly interval beginning 4 to 6 wks post CRT using Vincristine, Carboplatin and Cyclophosphamide.
Results

- 38 patients have completed the CRT
- Medulloblastoma (63%) and Supratentorial PNET (37%); M Stage M0 (53%), M1 (6%), M2 (6%), M3 (35%)
- All patients completed CRT as per schedule except interruption for 1 week in one patient due to facial cellulitis and another due to malaria.
Hematological Toxicity

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Total (%)</th>
<th>Grade III/IV(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia</td>
<td>78</td>
<td>14</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>86</td>
<td>58</td>
</tr>
<tr>
<td>Thombocytopenia</td>
<td>74</td>
<td>22</td>
</tr>
</tbody>
</table>
Supportive care in CTRT phase

- A total of 58% patients required GCSF for > grade II neutropenia.
- 4 (18%) patients required RBC transfusion
- One patient needed platelet support.
- None of the patients died of treatment related toxicity
<table>
<thead>
<tr>
<th>Response</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete remission</td>
<td>59</td>
</tr>
<tr>
<td>good partial remission</td>
<td>31</td>
</tr>
<tr>
<td>stable disease</td>
<td>10</td>
</tr>
</tbody>
</table>
Overall Survival (N-38)

Cum Survival

OVERALL SURVIVAL (Months)

OS-59%
Role of biology in future important

- Surgery
- Neuraxis imaging and cerebrospinal fluid
 - Comprehensive clinical, histopathological, and molecular staging
 - Low risk → Chemotherapy and 55/18 Gy
 - Moderate risk → Chemotherapy and 55/35 Gy
 - High risk → High-dose chemotherapy with or without experimental treatment and 55/36 Gy

- Tumour
- Molecular and histopathological studies
 - Histology
 - DNA
 - RNA
 - Protein