SBRT in Prostate Cancer
Evidence and Methodologies and tips

Vedang Murthy, Professor, TMH
Overview

- Why SBRT (Extreme Hypofractionation)
 - Rationale
 - Evidence

- How is it done?
 - Methodology

- India Specific issues
 - Evidence
 - Tips for Practice
It is rare that nature hands us a cancer situation where an improved treatment goes hand in hand with a shorter and convenient one.

Why SBRT

- Offers opportunity to **optimize therapeutic ratio**
- Probable similar efficacy and toxicity profile
- Short course treatment
- Cost effective
- Resource effective
Why Hypofractionate?

- Clinical Rationale
 - More convenient for patients
 - Travel
 - Stay
 - More patients can be treated with the same number of linear accelerators
 - Throughput
 - Lower the costs of treatment

- Biological rationale
 - Low a/b ratio
Fractionation in prostate cancer

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conventional fractionation</th>
<th>Moderate fractionation</th>
<th>Extreme fractionation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equi effective dose</td>
<td>74Gy/37#</td>
<td>60Gy/20#</td>
<td>36.25Gy/5#</td>
</tr>
<tr>
<td>Dose/#</td>
<td>2Gy</td>
<td>3 Gy</td>
<td>7.5Gy</td>
</tr>
</tbody>
</table>

Prostate BED ($\alpha/\beta : 10$)
- Conventional: 89 Gy
- Moderate: 78 Gy
- Extreme: 60 Gy

Rectum BED ($\alpha/\beta : 3$)
- Conventional: 123 Gy
- Moderate: 120 Gy
- Extreme: 106 Gy

Prostate BED ($\alpha/\beta : 2$)
- Conventional: 148 Gy
- Moderate: 150 Gy
- Extreme: 154 Gy
Extreme Hypo-fractionation : Practice

- 15% of respondents reported that SBRT was one of their clinically used schedules for radical treatment
- Five centers reported using SBRT for more than 50% of their patients
Evidence for SBRT

- Is it safe?

- Is it effective?
Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies

William C. Jackson, MD, * Jessica Silva, BS, * Holly E. Hartman, MS, †

Graph A:
- **Y-axis:** Biochemical Recurrence-Free Survival
- **X-axis:** Years Post-SBRT
- **Data Points:** 98.4%, 96.9%, 96.1%, 95.3%, 93.7%, 87.2%
- **Studied Numbers:** 5013, 4386, 1856, 2066, 557, 84
- **Studies:** 31, 23, 16, 10, 2, 1

Graphs B & C:
- **Graph B:** Urinary EPIC scores overtime
- **Graph C:** Bowel EPIC scores overtime
- **Graph D:** Sexual EPIC scores overtime

Time Periods:
- **Urinary EPIC:** 1,585, 1,206, 1,013, 961, 922
- **Bowel EPIC:** 1,585, 1,206, 1,013, 1,021, 922
- **Sexual EPIC:** 1,188, 809, 616, 544, 445
Extreme Hypofractionation trials

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>PACE B</th>
<th>Hypo RT-PC</th>
<th>NRG-GU 005</th>
<th>PRIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study/Group</td>
<td>Royal Marsden NHS Foundation Trust</td>
<td>Scandinavian</td>
<td>NRG Oncology</td>
<td>Tata Memorial Centre, India</td>
</tr>
<tr>
<td>Stage/Eligibility</td>
<td>Low risk: Intermediate risk: cT1c - cT3a: Int risk</td>
<td>Low Risk</td>
<td>High risk, Very high risk and node positive</td>
<td></td>
</tr>
<tr>
<td>Target Accrual</td>
<td>1716</td>
<td>1200</td>
<td>606</td>
<td>434</td>
</tr>
<tr>
<td>Interventions</td>
<td>36.25Gy in 5 fractions vs 78Gy in 39 fractions</td>
<td>42.7Gy in 7 fractions vs 78Gy in 39 fractions</td>
<td>36.25Gy in 5 fractions vs 70Gy in 28 fractions</td>
<td>36.25Gy in 5 fractions vs 68Gy in 25 fractions</td>
</tr>
</tbody>
</table>
N= 1200
Intermediate risk (89%)
ADT : not allowed
Technique : 3DCRT (80%) or IMRT (20%)

78.0 Gy in 39 fractions, daily
42.7 Gy in seven fractions, alt day

Non-inferiority margin : 4% at 5 years
N= 874
Low or intermediate risk
ADT : not allowed

78.0 Gy in 39 fractions, daily
36.25 Gy in 5 fractions, alt day
Our unique problems for SBRT

- Is SBRT Feasible for
 - Advanced stage at diagnosis (T3-4)/High Risk
 - Higher incidence of node positive disease
 - Higher incidence of TURP (22-30%)
SBRT for high risk Prostate cancer

- Is it safe?
- Is it effective?
- Should you treat the pelvic nodes prophylactically?
Patient characteristics

<table>
<thead>
<tr>
<th>N= 68 patients</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age</td>
<td>68 years (44-89)</td>
</tr>
<tr>
<td>Risk grouping</td>
<td>High risk: 20 (29%)</td>
</tr>
<tr>
<td></td>
<td>Very high risk: 11 (17%)</td>
</tr>
<tr>
<td></td>
<td>Node positive: 37 (54%)</td>
</tr>
</tbody>
</table>

Toxicity

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Genitourinary</td>
<td>27 (41%)</td>
<td>8 (12%)</td>
<td>0</td>
</tr>
<tr>
<td>Acute Gastrointestinal</td>
<td>7 (11%)</td>
<td>3 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>Late Genitourinary</td>
<td>11 (16%)</td>
<td>3 (4.5%)</td>
<td>2 (2.5%) /0</td>
</tr>
<tr>
<td>Late Gastrointestinal</td>
<td>7 (10%)</td>
<td>3 (4%)</td>
<td>0</td>
</tr>
</tbody>
</table>
SBRT in Patients with a prior TURP

- Is it safe?

- How does one select the right patient?

- What precautions should be taken?
Purpose: To determine GU toxicity outcomes in prostate cancer patients treated with SBRT who have undergone a prior TURP and compare it to a similar non-TURP cohort.

Methods: N=100 (50 TURP, 50 Non TURP). Matching done for DM and volume of RT.

Median follow-up for the entire cohort was 26 months.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Non TURP</th>
<th>TURP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG ≥ Gr II acute GU toxicity</td>
<td>8%</td>
<td>6% (p=0.34)</td>
</tr>
<tr>
<td>RTOG ≥ Gr II late GU toxicity</td>
<td>8%</td>
<td>12% (p=0.10)</td>
</tr>
<tr>
<td>Stricture rate</td>
<td>4%</td>
<td>6% (p=0.64)</td>
</tr>
<tr>
<td>Incontinence rate</td>
<td>0%</td>
<td>4% (p=0.12)</td>
</tr>
</tbody>
</table>

October, 2019
Time to Severe toxicity

The median time to severe late toxicity: 13 months

- Non-TURP 16 months
- TURP cohort 10 months

AVOID in multiple TURPs
AVOID upto 6 months of TURP
AVOID in stricture/ overflow incontinence
Evidence in making
Study protocol of a randomised controlled trial of prostate radiotherapy in high-risk and node-positive disease comparing moderate and extreme hypofractionation (PRIME TRIAL)

Vedang Murthy, Indranil Mallick, Abhilash Gavarraju, Shwetabh Sinha, Rahul Krishnatry, Tejshri Telkhade, Arunsinh Moses, Sadhna Kannan

STANDARD ARM (Target- 217)
- Moderate Hypofractionation
 - 68Gy/25 to primary (2.72Gy/#)
 - 5 weeks
 - Node positive disease – 50Gy/25# to pelvis

EXPERIMENTAL ARM (Target- 217)
- Extreme Hypofractionation/SBRT
 - 36.25Gy/5# to primary (7.25Gy/#)
 - 7-10 Days
 - Node positive disease – 25Gy/5# to pelvis

Primary end point: 4 year biochemical failure free survival
Secondary End Points: Toxicity, QOL, OoP Expenditure

Total target: 434 patients

Clinicaltrials.gov Identifier (NCT03561961)
Methodology
Simulation

SHOULD BE USED

- **Strict Bladder Protocol**
 - Void → Drink 500ml water and hold for 45 mins
- **Empty Rectum: No Gas**
 - Low residue/Fibre
- **COMFORTABLE, Supine, with arms folded on the chest**
- **Knee Rest/Ankle stocks**
- **CT MRI fusion**

MAY BE USED!

- **ORFIT**
- **VACLOC**
- **Gold Markers**
- **RECTAL BALOON**
- **SPACER**
- **IV Contrast**
International Prostate Symptom Score (I-PSS)

<table>
<thead>
<tr>
<th>Patient Name:</th>
<th>Date of birth:</th>
<th>Date completed:</th>
</tr>
</thead>
</table>

In the past month:

<table>
<thead>
<tr>
<th>Item</th>
<th>Not at All</th>
<th>Less than 1 in 5 Times</th>
<th>Less than Half the Time</th>
<th>About Half the Time</th>
<th>More than Half the Time</th>
<th>Almost Always</th>
<th>Your score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incomplete Emptying</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2. Frequency</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3. Intermittency</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4. Urgency</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5. Weak Stream</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6. Straining</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>None</th>
<th>1 Time</th>
<th>2 Times</th>
<th>3 Times</th>
<th>4 Times</th>
<th>5 Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Nocturia</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total I-PSS Score

Score:

- 1-7: Mild
- 8-19: Moderate
- 20-35: Severe

Quality of Life Due to Urinary Symptoms

<table>
<thead>
<tr>
<th>Delighted</th>
<th>Pleased</th>
<th>Mostly Satisfied</th>
<th>Mixed</th>
<th>Mostly Dissatisfied</th>
<th>Unhappy</th>
<th>Troubled</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you were to spend the rest of your life with your urinary condition just the way it is now, how would you feel about that?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Newer technique-Insertion of Hydrogel spacers (SpaceOAR system)

Polyethylene glycol hydrogel that expands the perirectal space as an transperineally injected liquid and then polymerizes into a soft, absorbable spacer.

Fig. 1. after spacer

Figure 2. Illustration of transperineal polyethylene glycol hydrogel spacer injection. The needle is placed at the mid-prostate level between Denonvilliers fascia and rectal wall, hydrodissection is performed to confirm proper positioning, and the hydrogel is injected.
Clinical Investigation

Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy

Neil Mariados, MD,* John Sylvester, MD,† Dhiren Shah, MD,*

![Graph showing dosimetric data with control and spacer comparisons.]

P<.0001 for all
Results

A. Grade 1+ Rectal Toxicity

- Control
- Spacer

B. Grade 2+ Rectal Toxicity

- Control
- Spacer

Number at risk:

Control: 72
Spacer: 149

Control: 72
Spacer: 149
Issues with Spacers

- Cost
- Invasive technique
- Limited use in high risk
- Not useful for re-irradiation
- Not useful with rectal involvement
- Not Available in India: Yet.

Alternatives
Contouring Guidelines

ESTRO ACROP guideline

ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer

Carl Salembiera, Geert Villeirsb, Berardino De Baric, Peter Hoskind, Bradley R. Pieterse, Marco Van Vulpenf, Vincent Khoog, Ann Henryh, Alberto Bossii, Gert De Meerleerj, Valérie Fonteynek,*

- **Prostate:**
 - GTV – gross tumor delineated by newer imaging
 - CTV – GTV + Prostate (low risk)
 - GTV + Prostate + SV (intermediate and high risk)
 - PTV – CTV + Margins

- Pelvic nodes (if involved)
- OARs: rectum, bladder, proximal femur, bowel bag
If you can’t find the GU diaphragm, just end your prostate/GTV at least 0.7 cm above penile bulb (ensures PTV does not overlap penile bulb).

Alternative inferior border...
CT-MRI fusion - Apex delineation
PTV considerations: IGRT Dependent

<table>
<thead>
<tr>
<th>AT TMH</th>
<th>PTV all around</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard fractionation</td>
<td>7 mm</td>
<td>7 mm</td>
</tr>
<tr>
<td>Moderate hypofractionation</td>
<td>7 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>Extreme hypofractionation</td>
<td>5 mm</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

IGRT used: Daily CBCT with bone followed by prostate matching
Scheduling of SBRT

Phase II randomised trial

Once-weekly versus every-other-day stereotactic body radiotherapy in patients with prostate cancer (PATRIOT): A phase 2 randomized trial

Harvey C. Quon a,*, Aldrich Ong b, Patrick Cheung c, William Chu c, Hans T. Chung c, Danny Vesprini c, Amit Chowdhury b, Dilip Panjwani d, Geordi Pang c, Renee Korol c, Melanie Davidson c, Ananth Ravi c, Boyd McCurdy b, Liying Zhang c, Alexandre Mamedov c, Andrea Deabreu c, Andrew Loblaw c

a Tom Baker Cancer Centre, Calgary; b CancerCare Manitoba, Winnipeg; c Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto; and d BC Cancer Agency, Abbotsford, Canada

N = 152 (Low / intermediate risk)
Median follow up: 47 months
Dose: 40 Gy in 5 fractions.

Randomization: once per week (QW) vs. every other day (EOD)

Endpoint: Toxicity and QOL
Results

GI Toxicity

QOL

Severity of changes in EPIC quality of life.

<table>
<thead>
<tr>
<th>Quality of life domain</th>
<th>Once weekly</th>
<th>Every other day</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>67 (94.4%)</td>
<td>67 (97.1%)</td>
<td>0.68</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>4 (5.6%)</td>
<td>2 (2.9%)</td>
<td></td>
</tr>
<tr>
<td>Urinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>61 (85.9%)</td>
<td>65 (94.2%)</td>
<td>0.16</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>10 (14.1%)</td>
<td>4 (5.8%)</td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>56 (80%)</td>
<td>30 (43%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>14 (20%)</td>
<td>40 (57%)</td>
<td></td>
</tr>
<tr>
<td>Urinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>40 (57%)</td>
<td>40 (57%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>30 (43%)</td>
<td>30 (43%)</td>
<td></td>
</tr>
<tr>
<td>Late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>53 (79.1%)</td>
<td>55 (79.7%)</td>
<td>0.93</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>14 (20.9%)</td>
<td>14 (20.3%)</td>
<td></td>
</tr>
<tr>
<td>Urinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/very small/small problem</td>
<td>46 (68.7%)</td>
<td>47 (68.1%)</td>
<td>0.95</td>
</tr>
<tr>
<td>Moderate/big problem</td>
<td>21 (31.3%)</td>
<td>22 (31.9%)</td>
<td></td>
</tr>
</tbody>
</table>
What else is being **tried** with SBRT?

- Dose escalation: SBRT Boost to DIL
- HDR Like dosimetry/treatment
- Focal Reirradiation after local recurrence
- Combining with Immunotherapy
- SBRT in Post op (Don’t try at home!)
Acknowledgements

- **Uro Oncology Research Fellows**
 - Tejshri Telkhade
 - Abhilash Gavarraju

- **Trial Coordinators**
 - Dipika Chaurasia
 - Gitanjali Panigrahi

- Rahul Krishnatry
- **Department of Radiation Oncology, TMC, Mumbai**