Outline of Immunotherapies in Cancer

Dr. Sambit Swarup Nanda
Assistant Professor
Radiation Oncology
HBCH & MPMMCC, Varanasi

History of Immunotherapy

History of Immunotherapy

- In 1796 Dr. Edward Jenner realized cowpox protected against smallpox
 - Introduced the practice of vaccination

- Immunotherapy has attracted new attention
 - Multiple new oncologic agents
 - Immunotherapy may soon be another agent in the standard of care for treating cancer


History Of Immunotherapy

- William B. Coley: Father of Immunotherapy.
- Attempted to harness the power of the immune system for treating cancer in the late 19th century.
- Orthopedic surgeon : operated bone sarcomas.
- Patients with significant postoperative wound infection
 - > spontaneous regression of their unresected tumours.

- 1891, Coley injected 1000 patients with mixtures of live and inactivated bacteria such as *Streptococcus* pyogenes and *Serratia marcescens* with the hope of inducing sepsis and strong immune and antitumour responses.
- Cocktail of bacteria: "Coley's toxin"
- 1st documented active cancer immunotherapy intervention

The Next Revolutionary Wave

❖ Better understanding of the process of immune surveillance, by which innate immune cells eliminate cancer cells.

- ☐ T cell immune checkpoints: CTLA-4 and PD-1
- ☐ Propelled the field of immuno-oncology into its current era
- □ 2018 Nobel prize in Physiology or Medicine to Drs. Allison and Honjo.

Past Century

- Stages of cancer immunotherapy development
 - 1890- Cancer vaccine developed

- 1960's Tumor-specific monoclonal antibodies released
- 1970-1980's Clinical benefit of cancer immunotherapy does not fulfill expectations

• Late 1990's - Several cancer immunotherapy drugs spur renaissance of interest

Tumor Immunotherapy Overview

What is the Immune System?

- A biological collection of organs, specific cells, molecules, and other components that protect body against foreign matter
- Immune cells and antibodies travel through the body to protect it from infectious pathogens and can also help protect against cancer cell proliferation

Innate Immunity

- Inherited physical and biochemical structures present from birth that protect the body from invading substances
- Innate immune defenses are non-specific
 - Respond to pathogens in a generic way
 - This system does not confer long-lasting immunity against a pathogen.
- The innate immune system is the dominant system of host defense in most organisms

Inflammatory Response

- The inflammatory response activates other components of the innate immune system's internal defenses
 - Phagocytes
 - □ Natural killer (NK) cells
 - ☐ Antimicrobial proteins
 - ☐ Cytokines (e.g., histamine, prostaglandins, etc.)
 - ☐ Kinins
 - ☐ Chemical reactions initiated by the complement system

Complement System

- The complement system
 - A group of 20+ proteins
 - Stimulates other immune system elements
 - Can also cause lysis of bacteria and certain other cells
 - Interferons and proteins are the two main types of non specific antimicrobial proteins

Adaptive Immunity

- ☐ Also called specific or acquired immunity
 - ☐ Develops upon exposure to a pathogen or foreign substance
 - ☐ Creates immunological memory
 - ☐ Substances causing this response are antigens
- ☐ The immune response can destroy anything containing the antigen, whether bacteria or cancer cells
- Adaptive immunity is highly specific to its molecular structural characteristics
 - ☐ This leads to an enhanced immune response to subsequent encounters with that same pathogen

Adaptive Immunity

The process of adaptive or acquired immunity is the basis of vaccines

➤ By exposing the immune system to an inactivated form of a pathogen, vaccination protects the person from ever contracting the disease

Types of Specific Immune Response

Humoral Immunity

- Mediated by proteins, including antibodies, in the blood and other bodily fluids
- Produces a cascade of chemicals from the complement system

- Antibodies are produced by plasma cells (derived from Bcells)
 - Bind to specific antigens, inactivating them and/or marking them for destruction

Cellular Immunity

- Also called cell-mediated immunity
- Mediated by T cells
- May attack target cells directly or indirectly by activating other immune cells
 - Enhances the inflammatory response

 Cellular immunity primarily targets antigenic molecules and microorganisms

Immunotherapy

What is immunotherapy?

• The NCI defines immunotherapy as "treatment to boost or restore the ability of the immune system to fight cancer, infections, and other diseases"

Tumor immunotherapy Aims to

- > Augment the weak host immune response (active immunity)
- Administer tumor-specific antibodies or T cells, a form of passive immunity

How Does it Work?

- Intended to augment or restore the body's own immune function by some means.
- May be quite different from the traditional cancer treatments of chemotherapy/targeted therapy, radiation, and surgery, which intend to act directly upon the targeted tumor

Immunotherapies

Components of Immunotherapy

- New cancer immunotherapies include multiple modalities:
 - Vaccines
 - > Growth factors
 - Checkpoint inhibitors
 - > Monoclonal antibodies
 - Cytokines
 - > Several targeted and nonspecific agents

Vaccines

Mechanism

- Introducing a non-infectious version of a disease causing microbe into an individual, thereby providing a better stimulus for the activation of disease-specific T cells and the development of immunological memory.
- ➤ Memory immune cells are able to rapidly kill microbes and prevent infection
- ➤ More effective for Infection but not against cancer and chronic infectious diseases such as HIV.

Vaccines

- > Promoting intense, cancer-specific, T cell immune response
- > Vaccines derived from autologous or allogeneic tissue
 - > Autologous vaccines use tumor cells from patient receiving vaccine
 - Contains all tumor antigens present in tumor, and is MHC matched with the patient
 - > Allogeneic vaccines prepared with tumor cells from others
 - Easier to manufacture in quantity
 - May lack unique patient antigens

Vaccines: Sipuleucel-T

Only first FDA approved therapeutic cancer vaccine.

➤ Sipuleucel-T: An autologous vaccine approved for metastatic prostate cancer.

➤ Sip-T elicit anti-tumor activity via activation of T cells that are specific for prostatic acid phosphatase (PAP), an enzyme found on the surface of 95% of prostate cancer cells.

Vaccines: HPV Vaccine

- Development of virally induced tumors can be blocked by preventive vaccination with viral antigens or attenuated live viruses
 - > HPV vaccines promise to reduce the incidence of HPV-induced tumors

Specific/Targeted Immunotherapies

Tumor-specific monoclonal antibodies (MABs) act via direct or indirect immune response resulting in cell death

➤ MABs are produced from single B cell clone and consist of multiple identical copies.

- MABs work through various mechanisms of action to elicit cell death
 - Blocking signaling pathways necessary for tumor growth
 - Triggers immune-mediated cytotoxic response
 - Blocking angiogenesis

Antigen Non-specific Immunotherapies

Do not target cancer cells specifically

> Stimulate the immune system in a more general way that may lead to a better immune response against cancer cells

- Non-specific cancer immunotherapies may be administered as:
 - Monotherapy
 - Adjuvant therapy to boost the immune system and potentiate other agents, such as vaccines

Antigen Non-specific Immunotherapies

- > These agents include Cytokines
 - Five classes of cytoklnes are important in immunity
 - Interleukins
 - > Interferons
 - > Tumor necrosis factors
 - Colony-stimulating factors
 - Chemokines

Cytokines

- ➤ Binding of a cytokine to a cell can have a variety of different effects
 - ➤ Inducing production of more cytokine molecules
 - > Promoting or inhibiting cytokine activity
 - ➤ Activating or suppressing target cell activity, proliferation, or differentiation

Cytokines

Cytokines as Cancer Immunotherapy

Recombinant versions of some cytokines are produced commercially for cancer and other disorders

Interleukins, interferons, and colony-stimulating factors

Immuno-stimulatory Agents

- Potential mechanisms of these therapies vary
 - Direct anti-tumor effects
 - Reversal of immune suppression
 - Activation of innate immunity
 - Antigen-non-specific T cell activation

Immuno-stimulatory Agents

- CpG oligonucleotides
 - ➤ Potent stimulators of both innate and adaptive immune systems
 - > Currently being examined for cancer immunotherapy
 - Nonspecific immune stimulation
 - Activates macrophages and promotes macrophage-mediated killing of tumor cells
 - > Used as adjuvant may stimulate T cell responses
 - > BCG is currently used to treat bladder cancer

Immuno-stimulatory Agents: MABs

- > Some commercially available MABs
 - > Rituximab
 - > Ipilimumab
 - > Tositumomab
 - ➤ Adalimumab
 - ➤ lbritumomab tiuxetan

Immuno-stimulatory Agents

- ➤ Agonistic CD40
 - > CD40 is a tumor necrosis factor receptor expressed on APCs such as:
 - > Dendritic cells (DC)
 - **Bcells**
 - Monocytes
 - ➤ Many non-immune cells
 - > A wide range of tumors
 - > Agents currently in research
 - ➤ May be combined with vaccines and chemotherapy in the future

Immuno-stimulatory Agents: Enzyme Inhibitors

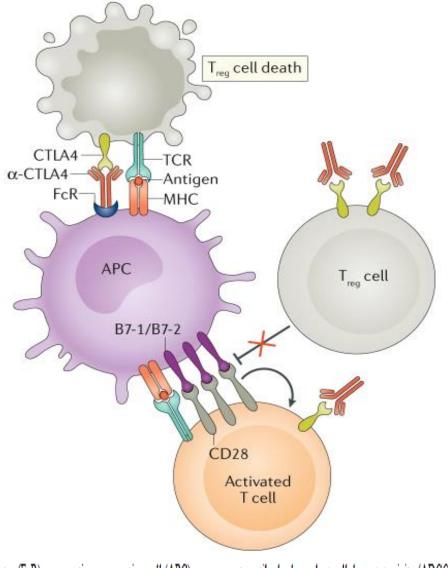
Targeted therapies inhibit signaling enzymes, allowing tumor growth

➤ May be called different names based on enzymes they block

Immuno-stimulatory Agents: Enzyme Inhibitors

- Tyrosine kinase inhibitors (TKls) include:
 - Axitinib
 - Dasatinib
 - Erlotinib
 - Gefitinib
 - Imatinib
 - Pazopanib
 - Sorafenib
 - Sunitinib

Immuno-stimulatory Agents


- Proteosome inhibitors
 - > Proteasomes are found in all cells
 - ➤ Help degrade excess protein

- ➤ Proteasome inhibitors cause a build-up of unwanted proteins in the cell Makes cancer cells die Bortezomib is a proteasome inhibitor used to treat multiple myeloma
- Signal-transduction inhibitors and multi-targeted kinase inhibitors

Checkpoint inhibitors

- CTLA 4 : Cytotoxic T lymphocyte antigen-4
- CTLA-4) and programmed cell death protein 1 (PD-1) are the canonical immune-checkpoint receptors.
- Together they show ligand—receptor interactions between T cells and APCs that modulate the T cell response to antigen.

Cytotoxic T lymphocyte antigen 4 (CTLA4)-blocking antibodies (α -CTLA4), especially when bound to an Fc receptor (FcR) on an antigen-presenting cell (APC), can promote antibody-dependent cellular cytotoxicity (ADCC). CD4+CD25+ regulatory T (T_{reg}) cells express higher amounts of CTLA4 than conventional T cells and are therefore more prone to α -CTLA4-induced ADCC than conventional T cells. In addition, α -CTLA4 can bind to CTLA4 on the surface of the T_{reg} cell and prevent it from counter-regulating the CD28-mediated co-stimulatory pathways that are playing a role in T cell activation. At the same time, α -CTLA4 can also promote T cell responses by blocking

CTLA4 on the surface of conventional T cells as they undergo activation. TCR, T cell receptor. Adapted from ©2019 Fritz, J. M. & Lenardo, M. J. Originally published in J. Exp. Med. https://doi.org/10.1084/jem.20182395 (ref. 135).

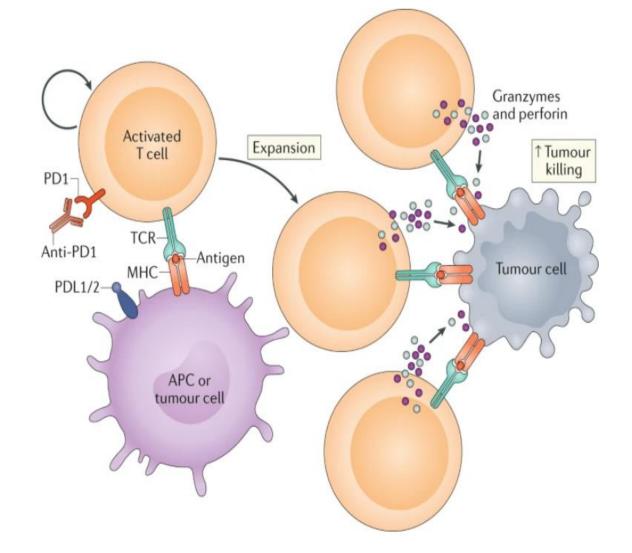
CTLA 4

• Inhibition of CTLA4 enhances T cell clonal responses to tumour-associated neoantigens and a high neoantigen burden portends a favourable response to anti-CTLA4 therapy

• Apart from boosting effector T cell responses, anti-CTLA4 therapy depletes local intratumoural T_{reg} cells through antibody-dependent cell-mediated cytotoxicity.

- Ipilimumab: human IgG1κ anti-CTLA4 mAb
- FDA approval in 2011 for non-resectable stage III/IV melanoma following evidence that it elicited potent tumour necrosis.
- Tremelimumab: IgG2 isotype form of a CTLA4-blocking antibody: Yet to get FDA Approval

PD1-PDL1 biological function


- PD1: First identified in 1992 as a putative mediator of apoptosis
- Role in restraining immune system hyperactivation, analogous to CTLA4
- Type 1 transmembrane glycoprotein within the immunoglobulin superfamily, PD1 exhibits a 20% and 15% amino acid identity to CTLA4 and CD28, respectively.

• Human PD1 is expressed on T cells after TCR stimulation and binds the B7 homologues PDL1 (also known as B7-H1)

• PDL2 (also known as B7-DC), which are present constitutively on APCs and can be induced in non-haematopoietic tissues by pro-inflammatory cytokines.

PD1-PDL1 Biological function

- Predominantly modulates effector T cell activity within tissue and tumors
- Therefore more widely expressed than CTLA-4
- It is induced on activated T cells, B cells, macrophages, dendritic cells and Tregs
- The potent inhibitory signal is provided through its interaction with programmed death-ligand 1 (PD-L1) and/or PD-L2, whereby PD-1 inhibits kinases involved in T cell activation

PD1-PD-L1 axis

Activated T cells express programmed cell death 1 (PD1), which engages with its specific ligand (PDL1 or PDL2) to dampen activation. Blocking of the PD1 axis through the administration of an anti-PD1 (or anti-PDL1 or anti-PDL2) antibody prevents this inhibitory interaction and unleashes antitumoural T lymphocyte activity by promoting increased T cell activation and proliferation, by enhancing their effector functions and by supporting the formation of memory cells. Consequently, more T cells bind to tumour antigens presented on tumour cells by MHC molecules via their T cell receptors (TCRs). This ultimately leads to the release of cytolytic mediators, such as perforin and granzyme, causing enhanced tumour killing. APC, antigen-presenting cell. Adapted from ©2019 Fritz, J. M. & Lenardo, M. J. Originally published in *J. Exp. Med.* https://doi.org/10.1084/jem.20182395 (ref. https://doi.org/10.1084/jem.2

PD1-PDL1

• Overexpression of PDL1 or PDL2 in cancer cell lines was found to constrain the CD8+ T cell cytotoxic antitumour response

 Blockade of PD1 suppressed the growth of transplanted myeloma cells

 Neutralizing the PD1 axis using mAbs or secreted PD1 extracellular domains reversed these effects and enhanced T cell cytotoxicity towards tumour cells

PD1-PDL1

 PD1 inhibition not only augments antitumoural immunity but also limits haematogenous seeding of B16 melanoma and CT26 colon carcinoma metastases

 PD1/PDL1 blockade can both enhance tumour cytolysis and limit metastasis

• In 2014, the humanized and fully human anti-PD1 mAbs pembrolizumab and nivolumab (both IgG4) became the first FDA-approved PD1-targeted therapeutics for refractory and unresectable melanoma

Other Immunotherapies

➤ Killer T cell andregulatory T cell manipulation Lymphokine activated killer cell (LAK cell)

➤ White blood cell stimulated to kill tumor cells

Adoptive therapy with autologous LAK cells and *in vivo* administration of IL-2 or chemotherapeutic drugs has yielded results in mice, with regression of solid tumors

Other Immunotherapies

- Variation of adoptive therapy isolates tumor-infiltrating lymphocytes (TlLs) from inflammatory infiltrate in and around solid tumors
 - TlLs are obtained from surgical resection specimens and expanded by culture in IL-2
 - TlLs may be enriched for tumor-specific cytotoxic Tlymphocytes (CTLs) and for activated NK cells

■ TIL therapy for metastatic melanoma being used in various cancer centers

Other Immunotherapies

- ➤ Other drugs boost immune system in a non-specific way, similar to cytokines
- Unlike cytokines, these therapies are not naturally found in the body
- Known as immunomodulating drugs
 - > Thalidomide
 - > Lenalidomide
 - Pomalidomide
 - Thought to work by boosting immune system: Exact mechanism unknown

Thank You