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Objectives

Introduction to Al, ML, DL
Data Pre-Processing in Radiation Oncology
Feature Engineering in Radiation Oncology

Deep Learning in Radiation Oncology - Introduction to use cases



Can you diagnose?




How did you do?

Knowledge of - Type of + Normal + Abnormal + Clinical




Introduction to Al, ML and DL



Introduction to Al, ML and DL
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What is Al, ML, DL?

“computers to process data in a way that is inspired by the human brain by recognizing




ML and DL Terminologies
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Classification, Detection and Segmentation

What is there in the image Which pixels belong to
and where? which object

Is this a cat?

Image Classification Object Detection Image Segmentation



Augmentation and Enhancement
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Pattern Recognition




Types of ML
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Deep Learning Basics

LABELS /IMAGES ALGORITHM PREDICTION  TRAINING
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Introduction to Al Development Process

Data Preprocessing
Feature Extraction



SDLC Vs Al Development
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Traditional software development lifecycle. Source:

https://www.couchbase.com/
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What are the issues with raw imaging data?

Jewellery artifact

Hover on/off image to show/hide findings.

(a) Brain MR Image without noise (5) Brain MR Image with noise
Noi Artifacts

olse

_ e  Metal Artifacts
e Quantum Noise e Motion artifacts
e Electronic Noise e Beam hardening artifacts
() Thermal Noise PY R|ng artifacts
e Patient Factors e Magnetic field
e Image Acquisition e Image noise or grain

e Reconstruction artifacts



What happens without data pre-processing?

@ Inaccurate results due to noise and artifacts

Higher incidence of false positives/negatives

Inefficient analysis leading to wasted computational cost

Outliers leading to over or under fitting
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Lack of standardization

@ Regulatory non-compliance



How to do imaging data pre-processing?
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Source - https://www.researchgate.net/figure/Hounsfield-unit-HU-before-enhancing-the-contrast-and-normalized-A-HU-of-MedSeq_fig4 370650442



https://www.researchgate.net/figure/Hounsfield-unit-HU-before-enhancing-the-contrast-and-normalized-A-HU-of-MedSeg_fig4_370650442

Feature engineering with imaging data

“feature engineering in radiology images involves extracting relevant information
from images to create new features that can be used to improve model
performance, diagnosis, or analysis”

Shape and size features: Area, perimeter, diameter, and volume.
Intensity features: Mean, median, mode, and standard deviation.
Texture features: Gabor filters or Haralick features.

Segmentation features: Tumor size or shape.

Spatial features: Relationships between different regions or structures.

Frequency features: Fourier transform.

Y YV YV Y Y VY

Deep learning features: Use convolutional neural networks (CNNs) to learn features from

images.



Why do we need feature extraction?

[ 01 Improve Model Performance

02 Lessen computation cost

03 Improve model interpretability




Al in Radiation Oncology

Decision support tools that Automated tumour and organ Enhanced image guidance, motion
combine clinical, genomic and segmentation as well as optimal management and scheduling promise
imaging data promise to support dose prediction promise to to improve clinical efficiency and
precision oncology practices streamline the planning process patients’ outcomes and experiences

Replanning

Plan approval
and QA

Treatment
planning

Treatment Imaging

Radiotherapy Follow-up
decision (simulation)

delivery care

Al promises to reduce radiation Al tools might help expedite Accurate prediction of response to treatment,
exposure of patients, enhance image the QA process and detect rare radiation-induced toxicities and other adverse
quality, suppress artefacts and enable erroneous events, especially for effects might provide real-time meaningful
more accurate image registration highly complex treatments clinical decision support

Huynh et al. Nat Rev Clin Oncol 2020

a jefferson THOMAS JEFFERSON UNIVERSITY HOME OF SIDNEY KIMMEL MEDICAL COLLEGE



Deep Learning Reconstruction

Cone-beam artifacts
Motion artifacts
Truncation artifacts
Noise

Deep learning reconstruction in brain MRI Deep learning reconstruction
in knee MRI

DLR = deep leaming reconstruction, FSE = fast spin echo, SSFSE = single-shot fast spin echo

Kiryu S et al. Published online: May 18, 2023
https://doi.org/10.1148/rg.220133

Filtered back-projection (FBP) / Iterative or Model based reconstruction Vs DLR
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